Главная страница

Контрольная работа 3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии


Скачать 1.55 Mb.
НазваниеКонтрольная работа 3 Аналитическая геометрия тема аналитическая геометрия Уравнения линии в декартовой системе координат. Параметрические уравнения линии
Дата27.12.2020
Размер1.55 Mb.
Формат файлаdoc
Имя файлаTema3.doc
ТипКонтрольная работа
#164706
страница2 из 15
1   2   3   4   5   6   7   8   9   ...   15

Задача №2.

Условие задачи №2 несколько различается в зависимости от номера варианта контрольной работы. Приведем решения простейших задач, входящих в это задание.

1) Составить уравнение плоскости, проходящей через точки , , .

Решение.

Уравнение плоскости, проходящей через точки , , имеет вид:

(3.7)

Тогда уравнение плоскости в силу уравнения (3.7) имеет вид или .

Запишем полученное уравнение в общем виде, т.е. в виде . Для этого раскроем определитель по первой строке . После преобразований получим: .

2) Найти нормальный вектор плоскости .

Решение.

Нормальный вектор - это вектор, перпендикулярный плоскости. Если плоскость задана общим уравнением , то нормальный вектор имеет координаты .



Рис. 3

Для плоскости нормальным является вектор = .

Отметим, что любой вектор, коллинеарный вектору = так же является нормальным вектором плоскости . Таким образом, при каждом ненулевом вектор с координатами будет являться нормальным вектором рассматриваемой плоскости.

3) Найти косинус угла между плоскостями и .

Решение.

Угол между двумя плоскостями и представляет собой угол между их нормальными векторами и определяется равенством



Для плоскости координаты нормального вектора определяются равенствами , , . Для плоскости - равенствами , , . Следовательно, = .

4) Составить уравнение плоскости , проходящей через точку параллельно плоскости : .

Решение.

Уравнение плоскости, проходящей через точку , имеет вид

(3.8)

Подставим в уравнение (3.8) координаты точки : .

Условие параллельности плоскостей и имеет вид

(3.9)

Так как плоскости и параллельны, то в качестве нормального вектора плоскости можно взять нормальный вектор плоскости , т.е. в формуле (3.9) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

5) Найти расстояние от точки до плоскости : .

Решение.

Расстояние от точки до плоскости представляет собой длину перпендикуляра, опущенного из точки на плоскость, и определяется формулой

(3.10)

Для плоскости координаты нормального вектора определяются равенствами , , . Следовательно, .

6) Составить канонические уравнения прямой, проходящей через точки и .

Решение.

Уравнения прямой, проходящей через точки и имеют вид

(3.11)

Так как , , то в силу (3.11) получим уравнения или .

7) Найти направляющий вектор прямой .

Решение.

Направляющий вектор - это вектор, параллельный прямой.

Если прямая задана каноническими уравнениями , то направляющий вектор имеет координаты .


Рис. 4
Для рассматриваемой прямой направляющим вектором является вектор .

Отметим, что любой вектор, коллинеарный вектору так же является направляющим вектором прямой . Таким образом, при каждом ненулевом вектор с координатами будет являться направляющим вектором рассматриваемой прямой.

8) Найти косинус угла между прямыми и .

Решение.

Угол между двумя прямыми и представляет собой угол между их направляющими векторами и определяется равенством



Для прямой координаты направляющего вектора определяются равенствами , , . Для прямой - равенствами , , . Значит, .

9) Составить канонические уравнения прямой , проходящей через точку параллельно прямой : .

Решение.

Канонические уравнения прямой имеют вид . Здесь - координаты точки, через которую проходит прямая.

В канонические уравнения прямой подставим координаты точки . Получим: .

Условие параллельности прямых и имеет вид

(3.12)

Так как прямые и параллельны, то в качестве направляющего вектора прямой можно взять направляющий вектор прямой , т.е. в формуле (3.12) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид .

10) Найти угол между прямой : и плоскостью : .

Решение.

Углом между прямой и плоскостью называется угол между прямой и ее проекцией на эту плоскость. Угол между прямой и плоскостью равен , где - угол между направляющим вектором прямой и нормальным вектором плоскости.



Рис. 5
Угол между прямой и плоскостью определяется формулой



Для плоскости : координаты нормального вектора определяются равенствами , , . Для прямой : координаты направляющего вектора - равенствами , , . Синус угла между прямой и плоскостью равен = . Следовательно, .

11) Составить уравнение плоскости , проходящей через точку перпендикулярно прямой : .

Решение.

Уравнение плоскости, проходящей через данную точку, имеет вид .

Подставим в указанное уравнение координаты точки . Получим: .

Условие перпендикулярности плоскости и прямой имеет вид

(3.13)

Так как искомая плоскость перпендикулярна прямой , то в качестве нормального вектора плоскости можно взять направляющий вектор прямой , т.е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение плоскости примет вид . Запишем это уравнение в общем виде: .

12) Составить канонические уравнения прямой , проходящей через точку перпендикулярно плоскости : .

Решение.

Канонические уравнения прямой, проходящей через данную точку, имеют вид .

Подставим в эти уравнения координаты точки . Получим:

Условие перпендикулярности прямой и плоскости имеет вид .

Так как прямая перпендикулярна плоскости , то в качестве направляющего вектора прямой можно взять нормальный вектор плоскости , т.е. в формуле (3.13) отношение можно принять равным единице. Следовательно, уравнение прямой примет вид: .

13) Найти координаты точки пересечения прямой : и плоскости : .

Решение.

Координаты точки пересечения прямой и плоскости представляют собой решение системы

(3.14)

Запишем параметрические уравнения прямой : и подставим выражения для в уравнение плоскости : . Отсюда ; . Подставим найденное значение в параметрические уравнения прямой : . Следовательно, .
Задача №3.

К кривым второго порядка относятся эллипс (рис.6), гипербола (рис. 7 и 8), парабола (рис. 9-12). Приведем рисунки и канонические уравнения этих кривых.
Эллипс



Рис. 6

Гипербола Гипербола .


Рис. 7 Рис. 8

Парабола Парабола




Рис. 9



Рис. 10



Парабола Парабола




Рис. 11



Рис. 12


Приведем примеры решения задачи №3.

Пример 1. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.

Решение.

Для приведения уравнения кривой второго порядка к каноническому виду применяют метод выделения полного квадрата.

Сгруппируем слагаемые, содержащие текущие координаты. Коэффициенты при и вынесем за скобки: .

Выделим полный квадрат: . Отсюда . Разделим обе части равенства на 25: . Запишем полученное уравнение в каноническом виде: .

Выполним параллельный перенос осей координат по формулам . При таком преобразовании начало координат переносится в точку , уравнение эллипса принимает канонический вид .

В нашем примере , , , .

Итак, рассматриваемое уравнение определяет эллипс с центром в точке и полуосями и .



Рис. 13

Пример 2. Привести уравнение кривой второго порядка к каноническому виду и построить кривую.

Решение.

Как и в предыдущем примере, сгруппируем слагаемые, содержащие текущие координаты: .

В скобках выделим полный квадрат: ; . Отсюда .

Выполним замену переменных . После этого преобразования уравнение параболы принимает канонический вид , вершина параболы в системе координат расположена в точке .



Рис. 14
Задача №4.

Кривая задана в полярной системе координат уравнением .

Требуется:

  1. найти точки, лежащие на кривой, давая значения через промежуток, равный , начиная от до ;

  2. построить полученные точки;

  3. построить кривую, соединив построенные точки (от руки или с помощью лекала);

  4. составить уравнение этой кривой в прямоугольной декартовой системе координат.

Решение.

Сначала построим таблицу значений и :



0

































2,00

1,92

1,71

1,38

1,00

0,62

0,29

0,08

0,00

0,08

0,29

0,62

1,00

1,38

1,71

1,92

Построим эти точки в полярной системе координат. Полярная система координат состоит из начала координат (полюса) и полярной оси . Координаты точки в полярной системе координат определяются расстоянием от полюса (полярным радиусом) и углом между направлением полярной оси и полярным радиусом (полярным углом). Для того, чтобы построить точку , необходимо построить луч, выходящий из точки под углом к полярной оси; отложить на этом луче отрезок длиной .



Рис. 15
Построим все точки, определенные в таблице и соединим их плавной линией



Рис. 16

Запишем уравнение рассматриваемой кривой в прямоугольной декартовой системе координат. Для этого воспользуемся формулами перехода от декартовой к полярной системе координат.

Если полюс совпадает с началом координат прямоугольной декартовой системы координат, полярная ось – с осью абсцисс, то между прямоугольными декартовыми координатами и полярными координатами существует следующая связь:

,

Откуда





Рис. 17

Итак, в уравнении исходной кривой , . Поэтому уравнение принимает вид . После преобразований получим уравнение .
Задача №5.

Построить на плоскости геометрическое место точек, определяемое неравенствами

1)

2)

Решение.

Для того, чтобы решить неравенство на плоскости, надо построить график линии . Кривая разбивает плоскость на части, в каждой из которых выражение сохраняет свой знак. Выбирая пробную точку в каждой из этих частей, найдем часть плоскости, являющуюся искомым решением неравенства.

1) Построим прямые и , заштрихуем область, в которой . Затем построим параболу и заштрихуем область, содержащую ось симметрии параболы (расположенную внутри параболы); построим прямую и заштрихуем область, лежащую выше прямой. Пересечение всех заштрихованных областей и определит множество точек, представляющих решение рассматриваемой системы.



Рис. 18
2) Построим линию, определяемую уравнением . Эта линия представляет собой ту часть окружности или , на которой . Далее построим прямую ( ). Решением рассматриваемого двойного неравенства является часть плоскости, расположенная между нижней половиной окружности с центром в точке радиуса прямой .



Рис. 19

1   2   3   4   5   6   7   8   9   ...   15


написать администратору сайта