Контрольная работа по теории ыероятностей. Решение к р по теории вероятностей на 30.11.14. Контрольная работа 9 Дисциплина Теория вероятностей Задание 1
Скачать 36.22 Kb.
|
1 2 Контрольная работа №9 Дисциплина «Теория вероятностей» Задание 1. Каждый приходящий на станцию поезд опаздывает с вероятностью 0,12 независимо от прихода других поездов. На станцию прибыло 9 поездов. Найти: а)наивероятнейшее число поездов, опоздавших на станцию; б)вероятность наивероятнейшего числа поездов. Решение А)Наивероятнейшее число поездов, опоздавших на станцию определим из двойного неравенства: где Подставляя данные значения, получим: Откуда Б)Найдем вероятность наивероятнейшего числа поездов по формуле Бернулли: Ответ: Задание 2. В каждом из 760 независимых испытаний событие А происходит с постоянной вероятностью 0,47. Найти вероятность того, что событие А происходит: а) точно 330 раз; б) меньше чем 330 и больше чем 288 раз; в) больше чем 330 раз. Решение А) Найдем вероятность того, что событие А происходит точно 330 раз. Применим формулу локальной теоремы Лапласа: где , k=330, n=760, p=0,47, q=0,53, Б) Найдем вероятность того, что событие А происходит меньше чем 330 и больше чем 288 раз вычислим по формуле Лапласа: де - интегральная функция Лапласа, ее значения находим по таблице. Тогда в) Найдем вероятность того, что событие А происходит больше чем 330 раз вычислим по формуле Лапласа: де - интегральная функция Лапласа, ее значения находим по таблице. Считаем Тогда 1 2 |