контр. КОНТРОЛЬНО. Контрольноизмерительные приборы
Скачать 0.59 Mb.
|
Тема: Контрольно-измерительные приборы 1. Введение КИП и А — контрольно-измерительные приборы и автоматика (КИП и А), обобщающее название всех средств измерений (СИ) физических величин веществ, контрольно-измерительных приборов, используемых для автоматизации процессов и производств. 2. Измерение температуры Температурой называют физическую величину, характеризующую степень нагретости тела. Это понятие связано со способностью тела с более высокой температурой передавать свою теплоту телу с более низкой температурой до тех пор, пока их температуры не сравняются. Одновременно с изменением температуры тел меняются и их физические свойства. Приборы для измерения температуры классифицируют в зависимости от того, какой метод измерения положен в основу их конструкции: контактный (метод непосредственного соприкосновения измерительного прибора с измеряемой средой) и неконтактный (метод, основанный на расположении измерительного прибора на расстоянии от измеряемой среды). К приборам, основанным на контактном методе измерений, относят жидкостные стеклянные термометры, термометры расширения твердых тел, манометрические термометры, термоэлектрические термометры (термопары), термопреобразователи (термометры) сопротивления. Для целей автоматизации применимы только два последних вида термометров. Термоэлектрические термометры (термопары) являются первичными преобразователями, выходной сигнал которых измеряют магнитоэлектрическими милливольтметрами или автоматическими потенциометрами. Термоэлектрический термометр, простейшая цепь которого показана на рис. 2.1, а, представляет собой чувствительный элемент, выполненный в виде двух проводников из разных металлов (или полупроводников) со спаянными концами. Сущность термоэлектрического эффекта заключается в том, что в месте соединения двух проводников из разных металлов возникает электродвижущая сила, называемая термоэлектродвижущей (сокращенно термо-ЭДС). Термо-ЭДС зависит от материала проводников А и Б, составляющих термоэлектрический термометр, а также от температуры холодного спая, называемого свободным концом 1. Свободный конец термоэлектрического термометра должен находиться в зоне постоянной температуры, имеющей определенное (известное) значение. При этом условии термо-ЭДС термоэлектрического термометра, а значит, и показания измерительного прибора будут зависеть только от температуры рабочего конца 2. Фактически свободный конец термоэлектрического термометра, как правило, находится в зоне переменной температуры, поэтому в качестве соединительных применяют так называемые компенсационные провода, позволяющие перенести свободный конец в зону с постоянной известной температурой. Для предохранения от повреждений термоэлектрические термометры заключают в защитную арматуру (рис. 2.1, б). Термоэлектрические термометры имеют стабильную характеристику: термо-ЭДС, развиваемая ими, стандартизована, что делает термоэлектрические термоменты взаимозаменяемыми. Современные средства микроэлектроники позволяют сигналы от термопар не только усиливать до нормального уровня, но и оцифровывать. Рис. 2.1. Простейшая термоэлектрическая цепь (а) и общий вид термоэлектрического термометра (6): 1 - свободный конец; 2 - рабочий конец; 3 - термоэлемент; 4 - жароупорный наконечник; 5 - металлический чехол; 6 - фарфоровые изоляторы; 7 - головка термометра с зажимами; А, Б - проводники из разных металлов Предусмотрено изготовление пяти типов термоэлектрических термометров; вольфрамрений (5% рения) —вольфрамрениевые (20% рения) типа ТВР; платинородий — платиновые типа ТПП; платинородий (30% родия) — платинородиевые (6% родия) типа ТПР; хромел ь-алюмелевые типа ТХА; хромель-копелевые типа ТХК. Кроме того, промышленность изготовляет нестандартные вольфраммолибденовые термоэлектрические термометры типа ВМ. Верхний предел температур, измеряемых термоэлектрическими термометрами, зависит от их типа. Так, термометр ТВР применяют для измерения температур до 2200°С, ТПП —до 1300, ТПР —до 1600, ТХА —до 1000, ТХК —до 600°С. Термопреобразователи сопротивления (термометры сопротивления) широко применяют во всех отраслйх промышленности для измерения температуры в трубопроводах, технологическом оборудовании, электрических вращающихся машинах, нагревательных печах, а также в производственных помещениях. Действие термопреобразователей сопротивления основано на свойстве применяемых в них проводниковых материалов (химически чистой платины или меди) изменять свое электрическое сопротивление при изменении температуры. Платиновые термопреобразователи сопротивления применяют для измерения температуры от —260 до 1100°С. Чувствительный элемент такого термопреобразователя (рис. 2.2) изготовлен из платиновой проволоки /диаметром 0,05...0,08 мм, намотанной на слюдяную пластинку 4 (каркас) с зубчатой нарезкой, и помещен в защитную арматуру 8. Медные термопреобразователи сопротивления для измерения температуры от —50 до 200°С изготовляют из медной изолированной проволоки диаметром 0,1. .0,2 мм, а выводы—из медной луженой проволоки диаметром 1... 1,5 мм. Рис. 2.2. Платиновый термопреобразователь сопротивления: 1 - платиновая проволока; 2 - каркас; 3 - серебряная лента; 4 - слюдяная пластинка; 5 - выводы; 6 - чувствительный элемент; 7 - оксид аммония; 8 - защитная арматура; 9 - зажим; 10 - крышка; 11 - головка; 12, 13 - штуцера под кабель и штуцер для крепления оправы; 14 - изоляторы Вторичными измерительными приборами для термопреобразователей сопротивления служат такие же нормирующие усилители и аналого- цифровые преобразователи, применяемые для термопар. Пирометры излучения применяют для измерения температуры твердых и расплавленных тел в пределах от 400 до 4000°С. Интенсивность излучения накаленных тел зависит от температуры их нагрева. Чем выше эта температура, тем больше излучение. Пирометры, измеряющие температуру по яркости накаленного тела, известны под названием пирометров частичного излучения; к ним относятся оптические и фотоэлектрические пирометры. Оптические пирометры для стационарных измерений не применяют, поэтому в данном учебнике они не рассматриваются. Для измерения мощности полного излучения накаленных тел, т. е. суммарного теплового и светового, служат радиационные пирометры, их называют еще пирометрами полного излучения. Фотоэлектрические пирометры. В них использовано свойство фотоэлемента образовывать под действием ярко накаленного тела фотоэлектрический ток, значение которого пропорционально интенсивности падающего на фотоэлемент светового потока. Фотоэлектрический пирометр (рис. 2.3, а) состоит из визирной головки б, силового блока 2, стабилизатора напряжения 1, электронного потенциометра 14 и разделительного трансформатора 15. В визирной головке, являющейся первичным прибором пирометра, помещен фотоэлемент 12. Для измерения температуры визирную головку устанавливают так, что световой поток от излучателя 5 направляется через линзу 4 объектива на фотоэлемент. Правильная наводка визирной головки на излучатель производится с помощью окуляра 11 и зеркального отражателя 7. Перед кассетой установлен электромагнитный вибратор 8, заслонка которого вибрирует с частотой электрического тока 50 Гц и попеременно открывает отверстия кассеты Р, пропуская на фотоэлемент световой поток то от излучателя, то от лампы накаливания 3, являющейся эталоном. Под влиянием световых потоков от излучателя и лампы накаливания на фотоэлементе образуется переменный фотоэлектрический ток, сила которого зависит от разности световых потоков. Переменное напряжение фотоэлектрического тока вначале усиливается электронным усилителем Д, расположенным в визирной головке, а затем в силовом блоке. Лампа накаливания подключена к выходному каскаду силового блока. Если световые потоки от излучателя и лампы накаливания одинаковы, то одинаковы и электрические импульсы, посылаемые фотоэлементом в измерительную цепь. Если температура излучателя увеличится, то импульсы, посылаемые фотоэлементом, будут также увеличиваться, вследствие чего ток в лампе накаливания возрастет до восстановления равновесия. Таким образом, схема, реагируя на неравновесие (разбаланс) импульсов фотоэлемента, будет непрерывно изменять значения тока, протекающего через лампу, обеспечивая равенство потоков лампы накаливания и излучателя. Измеряя силу тока, протекающего через лампу накаливания, можно определять температуру излучателя. Для измерения силы тока использован самопишущий электронный потенциометр 14, подключенный к шунту, который находится в цепи лампы накаливания. Рис. 2.3. Фотоэлектрический (а) и радиационный (б) пирометры излучения: 1 - стабилизатор напряжения; 2 - силовой блок; 3 - лампа накаливания; 4 - линза; 5 - излучатель; 6 - визирная головка; 7 - зеркальный отражатель; 8 - электромагнитный вибратор; 9 - кассета; 10 - светофильтр; // - окуляр; 12 - фотоэлемент; 13 -электронный усилитель; Ц - электронный потенциометр; 15 - разделительный трансформатор; 16 - диафрагма; 17 - объектив телескопа; 18 - термоприемник; 19 -стеклянная колба; 20 - медный кожух; 21 - цоколь; 22 - вторичный прибор; 23 -медные провода Фотоэлектрические пирометры применяют для автоматического контроля так называемой яркостной температуры в пределах от 600 до 4000° С (например, прокатываемого металла). Радиационные пирометры состоят из следующих основных частей: телескоп вторичного измерительного прибора и панели с катушками сопротивления. В зависимости от конструктивного выполнения телескопы, являющиеся первичным прибором (преобразователем), разделяются на рефлекторные и рефракторные. В пирометрах с рефлекторным телескопом поток излучения концентрируется на чувствительном элементе с помощью сферического зеркала-рефлектора, а в пирометрах с рефракторным телескопом—с помощью двояковыпуклой схеклянной линзы объектива. Рассмотрим принципиальную схему радиационного пирометра с рефракторным телескопом (рис. 2.3, б), получившего наиболее широкое применение. Объектив 17 телескопа направляют (визируют) на излучатель 5 (в данном случае — отверстия в кладке печи) так, чтобы поток лучей от него проходил через линзу 4 объектива и концентрировался на термоприемнике 18— чувствительном элементе телескопа. Термоприемник представляет собой термобатарею, состоящую из десяти миниатюрных термоэлектрических термометров, соединенных последовательно для увеличения термо-ЭДС. Линза окуляра 11 предназначена для правильной наводки (визирования) телескопа на нагретое тело, защитное стекло — для предохранения глаз наблюдателя, а диафрагма 16—для подгонки напряжения на зажимах телескопа при его градуировке. Телескоп применяют для измерения температуры нагретых тел в пределах от 400 до 2500°С. Оптическая система (линзы объектива и окуляра), чувствительный элемент (термобатарея), диафрагма и защитное стекло помещены в литой цилиндрический корпус, снабженный штуцером для крепления телескопа. Наиболее распространенным радиационным пирометром является пирометр РАПИР, основным элементом которого является телескоп ТЭРА-50 с термобатареей, преобразующей тепловое излучение нагретого тела в термо-ЭДС, измеряемую вторичным прибором. Кроме телескопа ТЭРА-50 в комплект пирометра РАПИР входят панель с катушками сопротивлений, защитная арматура ЗАРТ-53, один или два вторичных прибора (милливольтметры или потенциометры) и соединительные медные провода. Арматура ЗАРТ-53 защищает телескоп от возможных механических повреждений, загрязнений и главным образом от высокой температуры окружающей среды. Рис. 2.4. Общий вид телескоп ТЭРА-50: 1 - зажимы для подключения измерительного прибора; 2 - линза окуляра; 3 - корпус телескопа; 4 - термобатарея; 5 - фланец; 6 - линза объектива; 7 - диафрагма; 8 - штуцер При измерении радиационным пирометром температуры расплавленного металла применяют так называемые калильные трубы (защитные огнеупорные чехлы). Агрегатный комплект стационарных пирометров АПИР-С (ГСП) относится к пирометрам полного и частичного излучения и предназначен для бесконтактного измерения и контроля радиационной температуры поверхностей от 100 до 2500°С. Преобразователи этих пирометров работают в комплекте с вторичными измерительными преобразователями ПВ-0. В комплект АПИР-С входит несколько первичных преобразователей, предназначенных для измерения различных температур. Рассмотрим устройство и принцип действия одного из наиболее распространенных первичных преобразователей ППТ-121 (рис. 2.5) для измерения температуры полного излучения. Рис. 2.5. Пирометрический преобразователь ППТ-121: 1 - кронштейн; 2 - приемный элемент (термобатарея); 3 - конденсор; 4 - конденсорные линзы; 5 - полевая диафрагма; 6 - апертурная диафрагма; 7 - линза объектива; 8 - защитное стекло; 9 - наружная труба; 10 -разъем Он состоит из двух основных узлов: объектива, предназначенного для передачи энергии излучения от объекта измерения в приемное устройство, и приемного устройства, преобразующего энергию излучения в электрический сигнал термо-ЭДС. Объектив собран на кронштейне 1 и состоит из завальцованной в металлической втулке линзы 7 объектива, полевой диафрагмы 5, апертурной диафрагмы 6 и конденсора 3. Линза служит для получения изображения объекта в плоскости полевой диафрагмы, которая укреплена на кронштейне с помощью винта. Конденсор, состоящий из втулки и двух одинаковых конденсорных линз 4, передает изображение от полевой диафрагмы в плоскость приемного элемента 2 приемного устройства. Приемный элемент представляет собой термобатарею из миниатюрных фольговых хромель-копелевых термоэлектрических термометров (термопар), соединенных последовательно для увеличения термо-ЭДС. Термо-ЭДС, развиваемая термобатареей, зависит от разности температур горячих спаев, нагреваемых сфокусированным излучением, и холодных спаев, имеющих хороший тепловой контакт через медную шайбу с корпусом преобразователя. Температура холодных спаев зависит от температуры окружающей среды и, в частности, от температуры корпуса преобразователя, в котором находится термобатарея. Для настройки стандартной градуировочной характеристики термобатареи используют апертурную диафрагму 6, которую перемещают до подгонки градуировочной характеристики преобразователя до номинальной. Наружную трубу 9 пирометра надевают на объектив и закрепляют крышкой со стеклом 8, предохраняющим объектив от загрязнения. Подключают преобразователь ППТ-121 в измерительную схему с помощью разъема 10. Вторичный измерительный преобразователь ПВ-0 предназначен для усиления и преобразования в выходной сигнал ГСП напряжения низкого уровня, поступающего от первичного пирометрического преобразователя полного излучения ППТ-121. Сигнал низкого уровня, пропорциональный измеряемой температуре объекта, от первичного пирометрического преобразователя полного излучения ППТ поступает на вход преобразователя ПВ-0, где он преобразуется и усиливается до напряжения 0...2 В. 3. Измерение давления и вакуума Все тела, находящиеся на земной поверхности, испытывают со всех сторон одинаковое давление атмосферы, окружающей земной шар. Это давление называется атмосферным. Кроме того, различают абсолютное pабс, избыточное pизб давления и вакуум pвак. Абсолютным называют полное давление с учетом давления атмосферы, отсчитываемое от абсолютного нуля. Избыточным называют давление сверх атмосферного, равное разности между абсолютным и атмосферным давлением pизб = pабс - рот. Избыточное давление отсчитывается от условного нуля, за который принимается атмосферное давление. Если из закрытого сосуда откачать часть воздуха, то абсолютное давление внутри сосуда понизится и станет меньшим, чем атмосферное. Такое давление внутри сосуда называют вакуумом. Вакуум равен разности между атмосферным и абсолютным давлениями. Для измерения избыточного давления газа, пара и жидкости применяют манометры; небольших давлений и вакуума — напоромеры и тягомеры; вакуума — вакуумметры; давления и вакуума — тягонапоромеры и мановакуумметры. Манометры, вакуумметры и мановакуумметры изготовляют по ГОСТ 2405—Ј8, а напоромеры, тягомеры и тягонапоромеры — по техническим условиям предприятий-изготовителей. Манометры. По принципу действия их подразделяют на жидкостные (трубные), пружинные, мембранные, сильфонные, пьезоэлектрические, поршневые и проволочные (тензоманометры). Рассматрим лишь тензорезисторные манометры, пригодные для автоматизации технологических измерений. Манометр САПФИР-22ДИ (рис. 2.6) для измерения избыточного давления состоит из измерительного блока 4 и унифицированного электронного устройства 5. Внутри основания 2 блока 4 размещен мембранный тензопреобразователь 7, полость 8 которого заполнена кремнийорганической жидкостью и отделена от измеряемой среды металлической гофрированной мембраной 10. Мембрана приварена по наружному контуру к основанию 2. Рис. 2.6. Мембранный манометр САПФИР-22ДИ: 1 - прокладка; 2 - основание; 3 -полость; 4 - измерительный блок; 5 - электронное устройство; 6 -гермовывод; 7 - мембранный тензопреобразователь; 8 - полость тензопреобразователя; 9 - фланец; 10 - мембрана; 11 - камера Чувствительным элементом тензопреобразователя является пластина из монокристаллического сапфира с кремниевыми пленочными тензорезисторами, прочно соединенная с мембраной 10. Основное свойство тензорезисторов — способность изменять свое электрическое сопротивление в зависимости от степени прогиба мембраны тензопреобразователя. Измеряемая величина (давление среды в технологическом аппарате или трубопроводе) подается в камеру 11 фланца 9 измерительного блока и через жидкость, заполняющую тензопреобразователь, воздействует на мембрану, вызывая ее прогиб и изменение электрического сопротивления тензорезисторов. Электрический сигнал от тензопреобразователя передается из измерительного блока в электронное устройство 5 по проводам через вывод 6. Электронное устройство преобразует этот сигнал в токовый выходной сигнал манометра, значение которого зависит от измеряемого давления. 4. Измерение расхода и количества В промышленности учет расхода жидкостей, пара и газа ведут с помощью двух групп приборов: расходомеров, измеряющих расход вещества, т. е. его количество, протекающее по трубопроводу в единицу времени, и счетчиков количества, измеряющих суммарный объем или массу вещества, протекающего по трубопроводу. Часть расходомеров оборудована счетными устройствами, служащими как для измерения расхода, так и для определения суммарного расхода за определенный промежуток времени. Наиболее широко применяют расходомеры переменного и постоянного перепада. Расход вязких жидкостей, например мазута, измеряют ультразвуковыми расходомерами. Однако они сложны и дороги, поэтому их применяют сравнительно редко (в данной книге они не рассматриваются). Расходомеры, основанные на других принципах действия, пока еще не получили широкого распространения. Расходомеры переменного перепада. Принцип действия расходомеров переменного перепада основан на измерении давления по перепаду, который создается в трубопроводе установленным внутри него сужающим устройством. В суженном сечении увеличиваются скорость, а следовательно, и кинетическая энергия потока, что вызывает уменьшения его потенциальной энергии. Соответственно статическое давление потока после сужающего устройства будет меньше, чем перед ним. Разность между статическими давлениями потока, взятыми на некоторых расстояниях до и после сужающего устройства, называют перепадом давления. Простейшая схема измерения расхода по методу переменного перепада давления (рис. 2.7) включает в себя сужающее устройство (диафрагму) 2, установленное в трубопроводе 1, соединительные трубки 3 для отбора давления до сужающего устройства и после него и передачи этого давления к U-образному манометру 4. Рис. 2.7. Принципиальная схема измерения расхода по методу переменного перепада давления: 1 - трубопровод; 2 - сужающее устройство (диафрагма); 3 - соединительные трубки; 4 - U-образный манометр Перепад давления р будет тем больше, чем больше скорость потока, т. е. чем больше расход. Следовательно, перепад давления на сужающем устройстве является мерой расхода жидкости, газа или пара, протекающих через трубопровод. К достоинствам расходомеров переменного перепада относится возможность использования их при различных температурах и давлениях измеряемой среды, а к недостаткам — потеря давления потока и относительная трудность промышленного применения расходомеров при малых расходах. Для измерения расхода по методу переменного перепада давления в качестве сужающих устройств применяют стандартные диафрагмы и сопла, изготовленные в соответствии с требованиями специальных правил. В качестве стандартных сужающих устройств используются: трубки Вентури; трубки Пито; расходомерные сопла; диафрагмы. Наиболее часто в качестве сужающего устройства используются диафрагмы. Расходомерная диафрагма представляет собой диск с отверстием. Диафрагмы бывают бескамерные и камерные. Бескамерная диафрагма 2 (ГОСТ 26969—86) представляет собой стальной диск, имеющий концентрическое (симметричное оси) отверстие с острой кромкой со стороны входа потока и коническую часть со стороны выхода. Толщина диска не должна превышать 0,05 внутреннего диаметра трубопровода. Бескамерные диафрагмы применяют в трубопроводах диаметром более 400 мм. Отбор давления производится непосредственно перед диафрагмой и после нее по ходу потока в трубопроводе. При этом отборное устройство, установленное перед диафрагмой, обозначают знаком «+», а расположенное за диафрагмой —знаком «—». Камерная диафрагма (рис. 2.8) состоит из диска 1 и двух кольцевых камер 2 и для отбора давления до диафрагмы и после нее. Камеры соединяются с внутренним пространством трубопровода через кольцеобразные щели А и Б, расположенные непосредственно у торцовой поверхности диафрагмы. Таким образом, отбор давления в камерных диафрагмах производится по периметру трубопровода для измерения среднего давления в трубопроводе. К камерам присоединяют трубки 5 и 6, передающие перепад давления от диафрагм к дифманометру. Рис. 2.8. Камерная диафрагма: 1 - диск; 2, 3 - кольцевые камеры; 4, 7 - фланцы; 5, 6 - соединительные трубки; 8 - прокладки; 9 -болты Камерные диафрагмы применяют в трубопроводах с внутренним диаметром от 50 до 400 мм. Диафрагму и кольцевые камеры изготовляют из материалов, устойчивых к длительным воздействиям измеряемой среды. Чаще всего диск делают из нержавеющей, а камеры—из углеродистой стали. К качеству механической обработки поверхностей камерных диафрагм и других сужающих устройств предъявляют повышенные требования. Отверстие диска со стороны входа потока цилиндрическое на длине по оси не более 0,02 внутреннего диаметра трубопровода, а далее расточено на конус под углом 45° у выхода потока. Кромка отверстия диска у входа потока острая, без закруглений, вмятин и заусенцев. Угол между торцовой поверхностью диафрагмы и цилиндрической частью отверстия 90°. Камерные диафрагмы устанавливают на прямолинейных участках трубопроводов между двумя фланцами 4 и 7, стягиваемыми болтами 9. Для уплотнения соединения между фланцами и кольцевыми камерами, а также между камерами и диском ставят прокладки 8. Материал для прокладок выбирают в зависимости от химических свойств и давления измеряемой среды. Расходомерное сопло (рис. 2.9) состоит из плавно сужающейся части на входе и цилиндрической — на выходе. Кромка цилиндрической части острая, без фасок, закруглений и заусенцев. Очертание профильного отверстия сопла подобно очертанию струи при входе ее в сужающее устройство, поэтому в нем образуется значительно меньше завихрений, приводящих к безвозвратной потере давления потока, чем в диафрагме. Кроме того, сопла более стойки к истиранию и менее подвержены загрязнению. Но из-за сложности изготовления их применяют редко. Рис. 2.9. Расходомерное сопло Давление отбирают до начала сужения потока и в начале цилиндрической части сопла. На рисунке показаны два варианта отбора давления через кольцевые камеры (вверху) и через отдельные отверстия непосредственно у сужающего устройства (внизу). |