Курс лекций по дисциплине Биомеханика для обучающихся специальности (шифр) 0103000Физическая культура и спорт
Скачать 0.72 Mb.
|
Тема 6.Биомеханические основы технико-тактического мастерства. 1.Показатели технического мастерства. 2.Две группы показателей: 1) что умеет делать спортсмен (объем, разносторонность, рациональность техники); 2) как он это умеет делать (эффективность владения спортивной техникой). 3.Биомеханический анализ движений в плавании. Биомеханический анализ движений в лыжном спорте (лыжных гонках). 4.Биомеханический анализ движений в велосипедном спорте. 5.Биомеханический анализ движений в толкании ядра. 6.Биомеханический анализ движений в тяжелой атлетике. Эволюция спортивных игр свидетельствует о постоянно изменяющихся тенденциях в игровом процессе спортсменов. Весьма характерно, что 1970-1990 гг. в баскетболе и волейболе были ознаменованы универсализмом игроков; на стыке 90-х и 2000 гг. возникла строгая специализация игроков по игровому амплуа; в настоящее время отмечается возврат к прошлому, ведущий к подготовке игрока, владеющего широким арсеналом игровых действий в независимости от игрового амплуа [3, 4]. Происходящие процессы в отечественных спортивных играх свидетельствуют о жесткой конкуренции среди игроков внутри команд, так как появились сильные зарубежные спортсмены, обладающие высоким индивидуальным мастерством [5, 7, 8]. Все это привело к отсутствию поиска современных и эффективных методик подготовки команд и комплектованию их, уже на ранних этапах, подготовленными игроками, которые не всегда соответствуют тем тенденциям, которые требует игровая модель команды. В спортивных играх (баскетболе и волейболе) наряду с физической, технической, психологической, интеллектуальной, теоретической подготовкой одно из ведущих значений принадлежит тактической подготовке [1, 6]. Проблеме тактической подготовки в спортивных играх посвящено значительное количество работ (Усков В.А., 2004; Макаров Ю.М., 2008; Родин А.В., 2014), однако основное внимание специалистов обращено на совершенствование групповых и командных взаимодействий. В свою очередь индивидуальные тактические действия рассматриваются поверхностно, затруднено понимание их компонентной структуры, отсутствует их строгая классификация и методика тренировки на протяжении всей спортивной карьеры игрока. В основном индивидуальная тактика сводится к разновидностям и вариантам выполнения технических приемов игры в различных противоборствующих ситуациях с соперником. Вместе с тем при достаточной освещенности вопросов тактической подготовки спортсменов в игровых видах спорта проблема идентификации биомеханического компонента индивидуальных тактических действий затронута весьма поверхностно. Цель исследования Изучить и экспериментально обосновать биомеханический компонент индивидуальных тактических действий спортсменов игровых видов спорта. Основными методами исследования явились: изучение и обобщение научно-методической литературы, документальных и архивных данных; педагогические наблюдения с элементами видеосъемки; биомеханический анализ (видеоциклография); методы математической статистики. Организация исследования Исследование проводилось в период с 2012 по 2015 г. В исследовании приняли участие 168 волейболистов в возрасте от 10 до 22 лет. Квалификация спортсменов колебалась от II юношеского разряда до кандидата в мастера спорта (кмс). Исследования проводились на этапах начальной подготовки, спортивной специализации и совершенствования спортивного мастерства МБУДО СДЮСШОР № 7 г. Смоленска. В исследовании приняла участие студенческая волейбольная команда «СГАФКСТ», участвующая в чемпионате России 1-й лиги, а также студенческой волейбольной лиги России и Всероссийской универсиаде. Результаты исследования и их обсуждение Эффективность тактических действий в первую очередь зависит от индивидуального тактического мастерства, в основе которого лежат тактические знания, умения, навыки и качество тактического мышления, средствами его проявления служат двигательные действия, которые реализуются с помощью рациональной, экономичной и вариативной техники игрового приема . Обучение рациональной технике в игровых видах спорта активно происходит на этапе начальной подготовки (10-12 лет). Для ее эффективного формирования необходимо учитывать пространственно-временные параметры движения, особенно такого сложного приема, как нападающий удар . В процессе наблюдения за играми чемпионатов России по волейболу среди мужских команд нами было установлено, что при выполнении прямого нападающего удара наряду с выявленными ранее постановками стоп на опору при отталкивании (параллельно друг другу и носками внутрь) существует новый вариант и назван как перпендикулярный (одна нога - стопорящая, ставиться параллельно сетке, другая - толчковая - под углом к стопорящей). В процессе наблюдения за 117 игроками определено, что перпендикулярно на опору ставят стопы 51%, параллельно - 28%, носками внутрь -21%, при этом каждый игрок использует только свой вариант постановки стоп на опору. Пространственно-временная структура разбега представлена скоростью трех шагов разбега. Как показали результаты исследования, наибольшая скорость третьего шага разбега проявляется при выполнении прямого нападающего удара с параллельной постановкой стоп на опору и носками внутрь - 6,037 и 5,743 м/с соответственно (рис. 1). Это связано с тем, что при достаточной длине третьего шага затрачивается меньшее время на момент от постановки стопорящей ноги до постановки толчковой ноги. м/с 7,000 6,000 5,000 4,000 3,000 2,000 1,000 0,000 На наш взгляд, снижение скорости (5,028 м/с) в подфазе третьего шага разбега при исследовании фазы прыжка с перпендикулярной постановкой стоп на опору происходит за счет увеличения времени постановки стопорящей ноги параллельно сетке. В результате нарушения ритма шагов уменьшается частота шага, что существенно влияет на высоту прыжка. В ходе исследования установлено, что наибольшая скорость (5,440 м/с) фазы разбега достигается при исследовании фазы прыжка с параллельной постановкой стоп на опору (р < 0,05; рис. 2). Установлено, что уменьшение параметров длины (94,6 ± 4,6см) и времени (0,209 ± 0,045с) третьего шага разбега, являющегося основой для выполнения качественного отталкивания от поверхности с максимальной силой, ведет к снижению эффективности нападающего удара по ходу и линии до 34,6% (г = 0,789). При выполнении нападающего удара по ходу и линии в процессе длительных розыгрышей к концу игры угол сгибания ног в коленных суставах в момент отталкивания колеблется от 150 до 160 , что не позволяет задействовать рабочие мышцы для выполнения высокого прыжка, и это приводит к снижению эффективности приема до 30,8% (г = 0,824). В начале игры и в коротких розыгрышах данный параметр колеблется от 115 до 125 , что обеспечивает включение мышц в работу и достижение максимальной высоты прыжка (г = 0,825) при эффективности 52,5%. Установлено, что время выполнения фазы отталкивания (0,267 ± 0,032 м/с) и полета (0,685 ± 0,074 м/с) в фазе прыжка ведет к снижению эффективности нападающего удара по ходу и линии до 38,4% (г = 0,763). Характерно, что в начале игры и при коротких розыгрышах эти показатели составляют в среднем 0,223 ± 0,025 м/с и 0,592 ± 0,063 м/с при необходимой эффективности 55,8% (г = 0,795). Ухудшение параметров кинематической структуры нападающего удара по ходу и линии ведет к снижению эффективности его выполнения (нарушению оптималь- Скорость шагов разбега Щ Игроки, использующие в игре параллельную постановку стоп ^ Игроки, использующие в игре перпендикулярную постановку стоп I | Игроки, использующие в игре постановку стоп носками внутрь Рис. 1. Скорость трех шагов фазы разбега с различными Рис. 2. Скорость фазы разбега с различными вариантами постановки стоп на опору вариантами постановки стоп на опору ных характеристик разбега, отталкивания и прыжка), что позволяет спортсменам выполнить высокий прыжок, тем самым снижая разносторонность индивидуального тактического исполнения в ходе игры. Полученные данные позволяют предположить, что на этапе начальной подготовки (10-12 лет) современные тренеры не уделяют должного внимания формированию рациональной структуры двигательного действия, которое в последующем приводит к нарушению пространственно-временной структуры технического приема и, как правило, снижению ее вариативности, разносторонности, экономичности и эффективности в соревновательном процессе квалифицированных спортсменов. Заключение Полученные результаты исследования позволяют сделать вывод о том, что на этапе начальной подготовки (10-12 лет) для формирования рациональной, экономичной, вариативной, разносторонней и эффективной структуры технического приема ведущее значение должен занимать биомеханический компонент индивидуальных тактических действий. Это дает основание для дальнейшей разработки индивидуальной тактической подготовки спортсменов в игровых видах спорта с учетом биомеханического компонента двигательных действий. Тема 7.Локомоторные движения 1.Виды спортивных локомоций. 2. Биодинамика с опорой на воду (плавание) 3. Биодинамика передвижения со скольжением (лыжи) 4.Биодинамика передвижения с механическим преобразованием энергии 5.Передача усилий при академической гребле У всех локомоторных движений общая двигательная задача – усилиями мышц передвигать тело человека относительно опоры или среды. Среди передвижений относительно опоры (наземных передвижений) наибольшее распространение имеют шагательные. В водной среде применяется как отталкивание, так и притягивание. В некоторых видах спорта (спортивных играх, единоборствах, гимнастике и др.) локомоторные движения играют вспомогательную роль. Отталкивание от опоры выполняется посредством: а) собственно отталкивания ногами от опоры и б) маховых движений свободными конечностями и другими звеньями. Эти движения тесно взаимосвязаны в едином действии – отталкивании. От их согласования в значительной мере зависит совершенство отталкивания. При отталкивании опорные звенья неподвижны относительно опоры, а подвижные звенья под действием силы тяги мышц передвигаются в общем направлении отталкивания. Во время отталкивания легкоатлета от опоры стопа зафиксирована на опоре неподвижно. Шипы туфель, погружаясь в покрытие дорожки или брусок, обеспечивают надежное соединение с опорой. На стопу как на опорное звено со стороны голени действует давление ускоряемых звеньев тела, направленное назад и вниз. Через стопу оно передается на опору. Противодействием этому давлению служит реакция опоры. Она приложена к стопе в направлении вперед и вверх. Силы мышечных тяг толчковой ноги выпрямляют ее. Поскольку стопа фиксирована на опоре, голень и бедро передают ускоряющее воздействие отталкивания через таз остальным звеньям тела. При ускоренном движении подвижных звеньев на них воздействуют тормозящие силы (тяжести и инерции) других звеньев, а также силы сопротивления мышц-антагонистов. Реакция опоры при отталкивании является той внешней силой, которая обеспечивает ускорение телу спортсмена и передвижение его центра масс. Однако, тело человека – это самодвижущаяся система. В такой системе силы тяги мышц приложены к подвижным звеньям. Относительно каждого звена сила тяги мышцы, приложенная к нему извне, служит внешней силой. Следовательно, ускорения центров масс подвижных звеньев обусловлены соответствующими внешними для них силами, т.е. тягой мышц. Реакция опоры не является источником работы. По закону сохранения кинетической энергии изменение кинетической энергии равно сумме работ внешних и внутренних сил. Поскольку работа внешних сил (опоры) равна нулю, то кинетическую энергию спортсмена изменяет только работа внутренних сил (мышц). Реакция опоры при отталкивании под углом, отличающегося от прямого (не перпендикулярно к опорной поверхности), наклонены к опорной поверхности и имеют вертикальные и горизонтальные составляющие. Вертикальные составляющие обусловлены динамическим весом, т.е. суммой веса и сил инерции подвижных звеньев, имеющих ускорение (или его составляющую), направленное вертикально вверх от опоры. Горизонтальные составляющие реакций опоры обусловлены горизонтальными составляющими сил инерции подвижных звеньев. Контакт опорных звеньев с опорой не точечный, поэтому могут появиться и вращательные усилия, что усложнит схему реакции опоры. Маховые движения при отталкивании – это быстрые движения свободных звеньев тела в основном по направлению с отталкиванием ногой от опоры. При маховых движениях перемещаются центры масс соответствующих звеньев тела, что ведет к перемещению общего центра масс (ОЦМ) всего тела. Так, при прыжках в высоту в результате маховых движений руками и свободной ногой ОЦМ к моменту отрыва от опоры поднимается выше, чем без маховых движений. Если ускорение звеньев тела, выполняющих маховые движения, увеличивается, то и ускорение ОЦМ увеличивается. Таким образом, маховые движения, как и отталкивание ногой, осуществляют перемещение и ускорение ОЦМ. В маховых движениях в фазе разгона скорость звеньев увеличивается до максимума. С нарастанием ее нарастает и скорость ЦМ всего тела. Следовательно, чем выше скорость маховых звеньев, тем она больше сказывается на скорости ОЦМ. В фазе торможения мышцы-антагонисты, растягиваясь, напрягаются и этим замедляют движения маховых звеньев, совершая отрицательную работу (в уступающем режиме), скорость их уменьшается до нуля. Мышечные тяги перераспределяют скорости звеньев тела; движение внутри системы передается от одних звеньев к другим. Поэтому для достижения более высокой скорости ОЦМ нужно стараться продлить фазу разгона на большей части пути матового перемещения. Когда ускорения маховых звеньев направлены от опоры, возникают силы инерции этих звеньев, направленные к опоре. Совместно с весом тела они нагружают мышцы опорной ноги и этим увеличивают их напряжение. Дополнительная нагрузка замедляет сокращение мышц и увеличивает их силу тяги, в результате чего мышцы толчковой ноги напрягаются больше и сокращаются относительно дольше. В связи с этим увеличивается и импульс силы, равный произведению силы на время ее действия, а больший импульс силы дает больший прирост количества движения, т. е. больше увеличивает скорость. В фазе торможения маховых звеньев их ускорения направлены к опоре, а силы инерции – от нее. Следовательно, нагрузка на мышцы толчковой ноги в это время уменьшается, их сила тяги падает, но быстрота сокращения увеличивается. Сокращаясь быстрее, они могут добавлять скорость в последние моменты отталкивания. Так, маховые движения способствуют продвижению ОЦМ тела при отталкивании, увеличивают скорость ЦМ, увеличивают силу и удлиняют время отталкивания ногой и, наконец, создают условия для быстрого завершающего отталкивания. Угол наклона динамической опорной реакции дает представление о некоторых особенностях направления отталкивания от опоры в данный момент времени. При выпрямлении ноги во время отталкивания от опоры происходит сложение вращательных движений звеньев тела. По координатам ОЦМ тела человека за время отталкивания можно рассчитать линейное ускорение ОЦМ в каждый момент времени. Однако сопутствующие движения, в том числе маховые, обусловливают кроме линейного ускорения ОЦМ еще и угловые ускорения многих звеньев. Поэтому угол отталкивания как угол наклона динамической составляющей реакции опоры характеризует не полностью общее направление отталкивания в каждый данный момент времени. Если бы существовала внешняя движущая сила отталкивания, то угол ее наклона к горизонту можно было бы считать углом отталкивания. Однако в самодвижущейся системе к каждому звену приложены силы, которые в совокупности определяют движения именно данного звена. Заменить всю систему множества сил, приложенных к разным звеньям, равнодействующей движущей силой в этом случае невозможно. П ри движении по повороту в наземных локомоциях спортсмен находится в наклоне внутрь поворота. Прижимающая сила D, приложенная к опоре под острым углом (a), может быть разложена на вертикальную составляющую (Dy) и горизонтальную составляющую (Dx), направленную по радиусу от центра поворота (рисунок). Противодействие последней и есть центростремительная сила (Fцс), вызывающая центростремительное ускорение и искривляющая траекторию в движении по повороту. В инерциальной системе отсчета (Земля) центробежная сила – реальная сила инерции (Fцб) – и есть уже названная составляющая прижимающей силы, приложенная к опоре. В неинерциальной системе отсчета (тело спортсмена) центробежная сила – фиктивная сила инерции (Fин) – приложена к ОЦМ. Она образует относительно опоры момент силы (Fин h), который уравновешивает момент силы тяжести (Gd). Угол наклона тела (a) зависит от соотношения силы тяжести (G=mg) и центробежной силы (Fцб = ) : , где r – радиус кривизны поворота, v – линейная скорость тела. Рассмотрим также стартовые действия с точки зрения локомоторики. Стартовые действия обычно направлены на то, чтобы начать передвижение и быстро увеличить скорость. Стартовыми действиями начинается преодоление всех дистанций, а также передвижения в единоборствах, спортивных играх и других группах видов спорта. Стартовые положения – это исходные позы для последующего передвижения, которые обеспечивают лучшие условия развития стартового ускорения. Стартовые действия (при старте с места) начинают из стартового положения. Оно обычно определено правилами соревнований и соответствует биомеханическим требованиям, вытекающим из задач старта. Стартовое положение обеспечивает возникновение с первым движением ускорения ОЦМ тела в заданном направлении. Для этого проекция ОЦМ тела на горизонтальную поверхность приближена к передней границе площади опоры. При прочих равных условиях выдвижение ОЦМ тела вперед и более низкое его положение увеличивают горизонтальную составляющую начальной скорости. Так, в низком старте для бега угол начальной скорости ОЦМ тела меньше, чем в высоком. Суставные углы в стартовом положении должны отвечать индивидуальным особенностям соотношения рычагов, силовой подготовленности спортсмена и условиям стартового действия. Расположение всех звеньев тела зависит от условия стартового действия. С тартовые движения – это первые движения из стартового положения, которые обеспечивают прирост скорости и переход к последующему стартовому разгону. При старте ОЦМ тела спортсмена имеет ускорение, обусловленное мышечными усилиями. Как внутренние силы направлены в противоположные стороны: вперед – ускоряя подвижные звенья, назад – прижимая опорные звенья к опоре. Это можно сделать лишь допустив условно, что биомеханическая система тела человека отвердела, а реакция опоры играет роль внешней движущей силы (рисунок). Перенесенная сила здесь условно рассматривается как стартовая сила (S), вызывающая стартовое ускорение ОЦМ. По правилу приведения силы к заданной точке надо при переносе силы в ОЦМ прибавить пару сил (R и S'), которая создает стартовый момент. Его действие направлено на уменьшение наклона тела (например, у спринтера в стартовом разгоне). Уже говорилось, что сама опорная реакция, как и реакция связи, положительной работы не совершает. Стартовая сила и момент – это только условные меры воздействия, которое вызывает сложное движение всей биомеханической системы. Стартовый разгон обеспечивает увеличение скорости до такой, какая требуется для передвижения по дистанции. В спринтерских дистанциях за время стартового разгона скорость увеличивают до максимальной. В связи с этим разгон в спринте осуществляется дольше и на большем расстоянии, чем на более длинных дистанциях, где задача разгона – достижение только оптимальной для данной дистанции скорости, и поэтому необходимая скорость достигается на первых же шагах. В стартовом разгоне от цикла к циклу происходит изменение системы движений от стартовых до оптимальных для заданной скорости. В беге, например, это проявляется в увеличении длины шагов и уменьшении общего наклона тела. Все стартовые действия отличаются частными особенностями движений, зависящими от вида локомоций. ВИДЫ СПОРТИВНЫХ ЛОКОМОЦИЙ Видов локомоций зависят от видов спорта и биодинамики передвижений спортсмена в движениях ациклического характера (прыжки) и циклического: с фиксированной опорой (ходьба и бег), со скольжением (лыжный ход), в водной среде (плавание), а также с механическим преобразованием движений на опоре (велосипед) и на воде (академическая лодка). Рассмотрим в отдельности некоторые из этих движений. Биодинамика прыжка В прыжках расстояние преодолевается полетом. При этом достигается либо наибольшая длина прыжка (прыжок в длину с разбега, тройной прыжок), либо наибольшая высота (прыжок в высоту с разбега, прыжок с шестом), либо значительная и длина и высота (опорный прыжок в гимнастике). Траектория ОЦМ тела спортсмена в полете определяется формулами: где l – длина и h – высота траектории ОЦМ (без учета его высоты в моменты вылета и приземления), v - начальная скорость ОЦМ в полете, a - угол наклона вектора скорости к горизонтали в момент вылета и g – ускорение свободно падающего тела. Как видно из формул, особенно важны величина начальной скорости ОЦМ и угол его вылета. Начальная скорость ОЦМ создается при отталкивании, а также при подготовке к нему. Таким образом, в спортивных прыжках различается подготовка к отталкиванию, отталкивание от опоры, полет и амортизация (после приземления)[1]. В подготовку входят разбег и подготовительные движения на месте отталкивания. Биодинамику основных действий в прыжке рассмотрим на примере прыжка в длину с разбега, сравнивая ее, где необходимо, с биодинамикой прыжка в высоту. Разбег В разбеге решаются две задачи: создание необходимой скорости к моменту прихода на место отталкивания и создание оптимальных условий для опорного взаимодействия. В прыжках в длину добиваются наибольшей скорости разбега. Перед постановкой толчковой ноги на место отталкивания последние шаги изменяются: несколько шагов удлиняются, что снижает положение ОЦМ, а последний шаг делается быстрее и обычно короче. В прыжках в высоту не нужна большая горизонтальная скорость, разбег короче (7-9 беговых шагов вместо 19-24) при меньшей скорости. На место отталкивания нога ставится стопорящим движением. Это уменьшает горизонтальную скорость и увеличивает вертикальную, позволяет занять исходное положение при оптимально согнутой толчковой ноге, достаточно растянутых и напряженных ее мышцах, целесообразном расположении ОЦМ и необходимой скорости завершения разбега. Отталкивание Отталкивание от опоры в прыжках совершается за счет выпрямления толчковой ноги, маховых движений рук и туловища. Задача отталкивания – обеспечить максимальную величину вектора начальной скорости ОЦМ и оптимальное ее направление. После отталкивания, в полете, тело спортсмена всегда совершает движения вокруг осей. Поэтому в задачи отталкивания входит также и начало управления этими движениями. С момента постановки ноги на опору начинается амортизация – подседание на толчковой ноге. Мышцы-антагонисты растягиваются и напрягаются, углы в суставах становятся близкими к рациональным для начала отталкивания. ОЦМ тела приходит в исходное положение для начала ускорения отталкивания (удлинение пути ускорения ОЦМ). Пока происходит амортизация (сгибание ноги в коленном суставе) и место опоры находится еще впереди ОЦМ, спортсмен, активно разгибая толчковую ногу в тазобедренном суставе, уже активно помогает продвижению тела вперед (активный перекат). В течение амортизации горизонтальная скорость ОЦМ снижается, во время отталкивания создается вертикальная скорость ОЦМ. К моменту отрыва ноги от опоры обеспечивается необходимый угол вылета ОЦМ. Выпрямление толчковой ноги и маховые движения, создавая ускорения звеньев тела вверх и вперед, вызывают их силы инерции, направленные вниз и назад. Последние вместе с силой тяжести обусловливают динамический вес – силу действия на опору и вызывают соответствующую реакцию опоры. Отталкивание вперед происходит только в последние сотые доли секунды; основные усилия прыгуна направлены на отталкивание вверх, чтобы получить необходимый для длинного прыжка больший угол вылета ОЦМ. В прыжках в высоту по сравнению с прыжками в длину усилия направлены на обеспечение наибольшей вертикальной скорости, стопорящее движение более значительно (более острый угол постановки ноги), задачи уменьшения потерь горизонтальной скорости нет. Полет В полете траектория ОЦМ предопределена величиной и направлением вектора начальной скорости ОЦМ (углом вылета). Движения представляют собой движения звеньев вокруг осей, проходящих через ОЦМ. Задача сводится к возможно более дальнему приземлению, удерживая стопы как можно выше. Кроме того, существенно важно продвижение тела вперед после приземления. Спортсмены стремятся к моменту приземления поднять выше вытянутые вперед ноги и отвести руки назад: это обусловливает возможность после приземления рывком рук вперед с последующим разгибанием продвинуться вперед от места приземления. Биодинамика с опорой на воду (плавание) Способы плавания основаны на взаимодействии пловца с водой, при котором создаются силы, продвигающие его в воде и удерживающие на ее поверхности. Взаимодействие возникает вследствие погружения в воду и активных движений пловца. Специфические особенности биодинамики плавания связаны с тем, что силы, тормозящие продвижение, значительны, переменны и действуют непрерывно. Постоянной же опоры для отталкивания вперед у пловца нет, она создается во время гребковых движений и остается переменной по величине. При всех гребковых движениях гребущие звенья движутся относительно остальных частей тела назад, а последние относительно гребущих звеньев – вперед. В начале гребкового движения спортсмен плывет по дистанции с некоторой начальной скоростью. Вследствие гребка туловище продвигается вперед со скоростью большей, чем начальная. Гребущие звенья движутся относительно туловища назад быстрее, чем относительно воды. Таким образом, механизм динамического взаимодействия пловца с водой основан на изменениях сопротивления воды, обусловленных в первую очередь скоростью движения частей тела относительно воды. Если рассмотреть технику плавания брассом, то из исходного положения для гребка с согнутыми и разведенными ногами пловец делает сильный удар ногами назад, выпрямляя их в коленных суставах (фаза I). Руки в течение этой фазы вытянуты вперед. После окончания удара ногами происходит пассивное скольжение в воде при вытянутом положении тела (фаза Iа). Не допуская значительной потери скорости, пловец начинает разводить кисти рук в стороны, постепенно сгибая руки в локтевых суставах и опуская их вниз (фаза II). Фаза гребка руками завершается при наибольшей скорости продвижения кистей назад относительно тела. Друг за другом следуют гребковые движения ног (удар) и рук, вызывая дважды увеличение скорости передвижения тела вперед. В фазах I и II пловец стремится увеличить скорость, в фазе Iа, придавая обтекаемую форму телу,- меньше терять скорость. С окончанием гребка руками начинается выведение их вперед со сгибанием в локтевых суставах (фаза III), а также сгибание ног. Это подготовка к гребковым движениям в следующем цикле. Движения начинаются медленно, чтобы не создавать значительной скорости движений навстречу потоку. Одновременно выполняются и подготовительные движения ног – сгибание и движение вперед. В следующей фазе (фаза IV) руки разгибаются в локтевых суставах и вытягиваются вперед, а ноги завершают подтягивание вперед до полного сгибания в коленных суставах. В фазе III необходимо избегать резкого снижения скорости, а в фазе IV – как можно меньше терять ее. Таким образом, из пяти фаз цикла только две – I и II – представляют собою последовательные гребки (ногами, а потом руками), при которых наращивается скорость. В остальные три фазы скорость снижается, причем IV и V одновременно подготавливают последующие гребковые движения в очередном цикле. В последние годы отмечается увеличение частоты гребковых движений, повышение их темпа при сохранении высокой скорости продвижения и небольших перепадах ее в цикле. Значительные «пики» на кривой скорости привели бы к резкому повышению сопротивления воды. Как и во всех локомоторных упражнениях, в плавании ищут оптимальное соотношение между длительностью цикла (темп движений) и расстоянием, преодолеваемым за один цикл («шаг цикла»). Более длинный «шаг» требует большего времени, снижает темп; более высокий темп укорачивает «шаг». И то и другое может снизить скорость. При оптимальном соотношении темпа и «шага» достигается наивысшая возможная скорость. Биодинамика передвижения со скольжением (лыжи) Лыжник увеличивает скорость передвижения благодаря отталкиванию лыжами и палками от снега в сочетании с маховыми движениями рук и ног (к отталкиваниям ногой и рукой присоединены махи рукой и ногой) и броском тела вперед (поворот таза вперед и рывок туловища вверх). В попеременном двухшажном ходе чуть позднее отталкивания палкой завершается отталкивание лыжей, начинается скольжение на другой лыже. Свободное скольжение (фаза I) происходит при тормозящем воздействии трения лыжи по снегу и незначительном сопротивлении воздуха. Чтобы меньше терять скорость, нельзя делать движения с ускорениями звеньев, направленными вверх; это вызовет силы инерции, направленные вниз, которые прижмут лыжу к снегу и увеличат трение. Замедление же движений вверх рук и переносной ноги (после предыдущего отталкивания лыжей «на взлет»), наоборот, снизит давление на лыжу и уменьшит трение. Свободное скольжение заканчивается постановкой палки на снег: после замедленного завершения махового выноса руки вперед лыжник, слегка согнув ее и зафиксировав суставы руки и туловища, энергии ударом ставит палку на снег. Начинается фаза скольжения с выпрямление опорной ноги (фаза II). Усиливая наклоном туловища над на палку, лыжник стремится повысить скорость скользящей лыжи. Стопа опорной ноги, немного выдвинутая вперед, предупреждает потерю энергии на амортизацию и преждевременный перекат. Опорная нога выпрямляется, подготавливаясь к последующему подседанию на ней. Подседание начинается еще при скольжении лыжи (фаза III), которая при энергичном разгибании опорной ноги в тазобедренном суставе быстро теряет скорость и останавливается. В фазе I необходимо как можно меньше терять скорость, в фазе II – увеличить скорость скользящей лыжи, в фазе III – быстрее остановить лыжу. Лыжа, стоящая неподвижно на снегу, благодаря силе трения (статической) служит опорой для отталкивания ногой и маховых движений (рукой, ногой и туловищем). Подседание, начато в фазе III, продолжается и завершается в фазе IV, сопровождаемое выпадом – движением переносной ноги вперед от носка стопы опорной ноги. С остановкой лыжи тело лыжника продолжает ускоренное продвижение вперед (перекат) благодаря: а) началу разгибания бедра опорной ноги в тазобедренном суставе («активный перекат»), б) выпаду переносной ногой, в) маху свободной рукой, г) началу поворота таза вперед и д) усиленному до максимума нажиму на палку в наиболее наклоненном ее положении. С окончанием подседания начинается выпрямление толчковой ноги в коленном суставе (фаза V), сопровождаемое завершающимся выпадом. Отталкивание ногой и рывок туловищем вверх обеспечивают общее направление отталкивания «на взлет», что снижает трение в фазе I следующего скользящего шага. Снижение скорости выпада из-за торможения растягиваемых мышц-антагонистов тазобедренного сустава компенсируется, насколько возможно, ускоренным поворотом таза вперед и энергичным завершением отталкивания палкой (до выпрямления руки и палки в одну линию). В фазе IV необходимо повысить скорость выпада, в фазе V – меньше терять скорость стопы в выпаде. Характерными особенностями современной техники считаются стремление уменьшить трение лыжи о снег завершенным отталкиванием лыжей («на взлет») и опорой на палку, а также высокий темп шагов. У хорошо подготовленных лыжников темп шагов достигает 110—120 в минуту. С повышением скорости хода изменяется ритм скользящего шага: относительно сокращается время отталкивания лыжей; подседание и выпрямление толчковой ноги делаются быстрее. Биодинамика передвижения с механическим преобразованием энергии Передача усилий при педалировании Велосипед как аппарат для передачи усилий на опору создает особые условия для приложения усилий велосипедиста и использования внешних сил. Давление ноги велосипедиста на педаль в системе велосипедист - велосипед - это внутренняя сила, вся система самодвижущаяся с внутренним источником движущихся сил. Давление на педаль создает момент силы относительно оси ведущей шестерни. Через цепь эта сила передается на ведомую шестерню заднего колеса. Под действием этой силы колесо, когда у него нет опоры, вращается вокруг своей оси: верхняя точка обода вперед, нижняя – назад. При опоре благодаря сцеплению покрышки колеса с грунтом сила трения, направленная вперед, уравновешивает действие обода на покрышку, направленное назад; в результате колесо не проскальзывает и вперед движется ось колеса. Точка, относительно которой она движется,– место опоры колеса. Источник движущей силы – мышцы ног спортсмена, передающие усилия через педаль, шатун, ведущую шестерню, цепь на заднюю шестерню. Нижняя точка обода заднего колеса не может сместиться назад и фиксирована на опоре с помощью силы трения (необходимая внешняя сила). Поэтому ось от связанной с нею задней шестерни получает ускорение вперед. Сила трения скольжения (статическая) не дает проскальзывать покрышке заднего колеса назад по грунту. Она служит той внешней силой, без которой ускорение системы на горизонтальной поверхности невозможно. Передача усилий при академической гребле Самым характерным в академической гребле является значительное перемещение гребца относительно лодки посредством подвижного сиденья (банки), перемещающегося на роликах вдоль продольной оси лодки на полозках. Выносные уключины увеличивают плечо рычага (расстояние от оси вращения весла до места хвата рукой). Гребец прилагает усилия руками к рукоятке весла и ногами к подножке, укрепленной неподвижно. При проводке весла лопасть встречает сопротивление воды. Сначала подтягивая лодку веслом, а потом отталкивая ее от воды, захваченной лопастью, гребец продвигает лодку вперед. За время проводки гребец перемещается на банке вперед, к носу лодки. Начало гребка выполняется одновременно с быстрым и ровным давлением ног на подножку в виде «прыжка» в сторону носа лодки. Этот «прыжок» как бы тормозится на рукоятке весла, что увеличивает силу, приложенную через весло к воде. После окончания гребка следует фаза заноса весел. Это движение является подготовительным для следующего гребка и совершается посредством перемещения на банке к корме; весла в это время заносятся лопастями к носу. Однако в этой фазе усилия гребка, приложенные к лодке, направлены в сторону движения лодки. Подтягивая себя к подножке за носковые ремни, гребец этим выталкивает из-под себя лодку вперед. ОЦМ системы гребец—весла—лодка от перемещения назад свою скорость изменить не может (если не учитывать увеличения сопротивления воды в зависимости от скорости лодки). Но лодка относительно гребца и воды получает ускорение вперед. Наличие его уменьшает падение скорости лодки, скользящей по инерции. Это делает скорость хода лодки более равномерной, что выгодно для продвижения против сопротивления воды. Таким образом, активные усилия гребка приложены через весла к воде в одном направлении, а через подножку к лодке – поочередно в двух («прыжок» от подножки и перемещение). |