Главная страница

КУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ. Курс лекций по микропроцессорной технике. Введение


Скачать 1.34 Mb.
НазваниеКурс лекций по микропроцессорной технике. Введение
АнкорКУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ.doc
Дата16.03.2017
Размер1.34 Mb.
Формат файлаdoc
Имя файлаКУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ.doc
ТипКурс лекций
#3832
страница12 из 22
1   ...   8   9   10   11   12   13   14   15   ...   22

4.3.2. Память данных

Память данных   МК выполняется, как правило, на основе статического ОЗУ. Термин «статическое» означает, что содержимое ячеек ОЗУ сохраняется при снижении тактовой частоты МК до сколь угодно малых значений (с целью снижения энергопотребления). Большинство МК имеют такой параметр, как «напряжение хранения информации» — USTANDBY. При снижении напряжения питания ниже минимально допустимого уровня UDDMIN, но выше уровня USTANDBY работа программы МК выполняться не будет, но информация в ОЗУ сохраняется. При восстановлении напряжения питания можно будет сбросить МК и продолжить выполнение программы без потери данных. Уровень напряжения хранения составляет обычно около 1 В, что позволяет в случае необходимости перевести МК на питание от автономного источника (батареи) и сохранить в этом режиме данные ОЗУ.

Объем памяти данных   МК, как правило, невелик и составляет обычно десятки и сотни байт. Это обстоятельство необходимо учитывать при разработке программ для МК. Так, при программировании МК константы, если возможно, не хранятся как переменные, а заносятся в ПЗУ программ. Максимально используются аппаратные возможности МК, в частности, таймеры. Прикладные программы должны ориентироваться на работу без использования больших массивов данных.

4.3.3. Регистры МК

Как и все МПС, МК имеют набор регистров, которые используются для управления его ресурсами. В число этих регистров входят обычно регистры процессора (аккумулятор, регистры состояния, индексные регистры), регистры управления (регистры управления прерываниями, таймером), регистры, обеспечивающие ввод/вывод данных (регистры данных портов, регистры управления параллельным, последовательным или аналоговым вводом/выводом). Обращение к этим регистрам может производиться по-разному.

В МК с RISC-процессором все регистры (часто и аккумулятор) располагаются по явно задаваемым адресам. Это обеспечивает более высокую гибкость при работе процессора.

Одним из важных вопросов является размещение регистров в адресном пространстве МК. В некоторых МК все регистры и память данных располагаются в одном адресном пространстве. Это означает, что память данных совмещена с регистрами. Такой подход называется «отображением ресурсов МК на память».

В других МК адресное пространство устройств ввода/вывода отделено от общего пространства памяти. Отдельное пространство ввода/вывода дает некоторое преимущество процессорам с гарвардской архитектурой, обеспечивая возможность считывать команду во время обращения к регистру ввода/вывода.

4.3.4. Стек МК

В микроконтроллерах ОЗУ данных используется также для организации вызова подпрограмм и обработки прерываний. При этих операциях содержимое программного счетчика и основных регистров (аккумулятор, регистр состояния и другие) сохраняется и затем восстанавливается при возврате к основной программе.

В фон-неймановской архитектуре единая область памяти используется, в том числе, и для реализации стека. При этом снижается производительность устройства, так как одновременный доступ к различным видам памяти невозможен. В частности, при выполнении команды вызова подпрограммы следующая команда выбирается после того, как в стек будет помещено содержимое программного счетчика.

В гарвардской архитектуре стековые операции производятся в специально выделенной для этой цели памяти. Это означает, что при выполнении программы вызова подпрограмм процессор с гарвардской архитектурой производит несколько действий одновременно.

Необходимо помнить, что МК обеих архитектур имеют ограниченную емкость памяти для хранения данных. Если в процессоре имеется отдельный стек и объем записанных в него данных превышает его емкость, то происходит циклическое изменение содержимого указателя стека, и он начинает ссылаться на ранее заполненную ячейку стека. Это означает, что после слишком большого количества вызовов подпрограмм в стеке окажется неправильный адрес возврата. Если МК использует общую область памяти для размещения данных и стека, то существует опасность, что при переполнении стека произойдет запись в область данных либо будет сделана попытка записи загружаемых в стек данных в область ПЗУ.

1   ...   8   9   10   11   12   13   14   15   ...   22


написать администратору сайта