Главная страница
Навигация по странице:

  • Система команд

  • КУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ. Курс лекций по микропроцессорной технике. Введение


    Скачать 1.34 Mb.
    НазваниеКурс лекций по микропроцессорной технике. Введение
    АнкорКУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ.doc
    Дата16.03.2017
    Размер1.34 Mb.
    Формат файлаdoc
    Имя файлаКУРС ЛЕКЦИЙ ПО МИКРОПРОЦЕССОРНОЙ ТЕХНИКЕ.doc
    ТипКурс лекций
    #3832
    страница10 из 22
    1   ...   6   7   8   9   10   11   12   13   ...   22


    Рис. 4.3.  Структура МПС с гарвардской архитектурой.

    Гарвардская архитектура почти не использовалась до конца 70-х годов, пока производители МК не поняли, что она дает определенные преимущества разработчикам автономных систем управления.

    Дело в том, что, судя по опыту использования МПС для управления различными объектами, для реализации большинства алгоритмов управления такие преимущества фон-неймановской архитектуры как гибкость и универсальность не имеют большого значения. Анализ реальных программ управления показал, что необходимый объем памяти данных   МК, используемый для хранения промежуточных результатов, как правило, на порядок меньше требуемого объема памяти программ. В этих условиях использование единого адресного пространства приводило к увеличению формата команд за счет увеличения числа разрядов для адресации операндов. Применение отдельной небольшой по объему памяти данных способствовало сокращению длины команд и ускорению поиска информации в памяти данных.

    Кроме того, гарвардская архитектура обеспечивает потенциально более высокую скорость выполнения программы по сравнению с фон-неймановской за счет возможности реализации параллельных операций. Выборка следующей команды может происходить одновременно с выполнением предыдущей, и нет необходимости останавливать процессор на время выборки команды. Этот метод реализации операций позволяет обеспечивать выполнение различных команд за одинаковое число тактов, что дает возможность более просто определить время выполнения циклов и критичных участков программы.

    Большинство производителей современных 8-разрядных МК используют гарвардскую архитектуру. Однако гарвардская архитектура является недостаточно гибкой для реализации некоторых программных процедур. Поэтому сравнение МК, выполненных по разным архитектурам, следует проводить применительно к конретному приложению.

    4.2.2. Система команд процессора МК

    Так же, как и в любой микропроцессорной системе, набор команд процессора МК включает в себя четыре основные группы команд:


    • команды пересылки данных;

    • арифметические команды;

    • логические команды;

    • команды переходов.

    Для реализации возможности независимого управления разрядами портов (регистров) в большинстве современных МК предусмотрена также группа команд битового управления (булевый или битовый процессор). Наличие команд битового процессора позволяет существенно сократить объем кода управляющих программ и время их выполнения.

    В ряде МК выделяют также группу команд управления ресурсами контроллера, используемую для настройки режимов работы портов ввода/вывода, управления таймером и т.п. В большинстве современных МК внутренние ресурсы контроллера отображаются на память данных, поэтому для целей управления ресурсами используются команды пересылки данных.

    Система команд   МК по сравнению с системой команд универсального МП имеет, как правило, менее развитые группы арифметических и логических команд, зато более мощные группы команд пересылки данных и управления. Эта особенность связана со сферой применения МК, требующей, прежде всего, контроля окружающей обстановки и формирования управляющих воздействий.

    4.2.3. Схема синхронизации МК

    Схема синхронизации МК обеспечивает формирование сигналов синхронизации, необходимых для выполнения командных циклов центрального процессора, а также обмена информацией по внутренней магистрали. В зависимости от исполнения центрального процессора командный цикл может включать в себя от одного до нескольких (4 — 6) тактов синхронизации. Схема синхронизации формирует также метки времени, необходимые для работы таймеров МК. В состав схемы синхронизации входят делители частоты, которые формируют необходимые последовательности синхросигналов.

    1   ...   6   7   8   9   10   11   12   13   ...   22


    написать администратору сайта