Осложнения и борьба с ними при эксплуатации скважин с УЭЦН на Южно-Ягунском месторождении. Осложнения и борьба с ними при эксплуатации скважин с УЭЦН на Юж. Курсовой проект по пм 02 мдк 02. 01 Эксплуатация нефтегазопромыслового оборудования На тему
Скачать 432.79 Kb.
|
2.4.2 Отложение солей и методы борьбы с ними Отложения солей могут происходить на всем пути движения воды - в пласте, скважине, трубопроводах и оборудовании установок подготовки нефти. Причинами отложения солей считают химическую несовместимость вод (например, щелочных с жесткими), поступающих в скважины из различных горизонтов (пластов) или пропластков; перенасыщенность водно-солевых систем при изменении термодинамических условий. В основном солеотложения наблюдаются при внутриконтурном заводнении пресными водами, что связывают с обогощением закачиваемых вод сульфатами при контакте с остаточными водами и растворении минералов. Отложения солей приводят к уменьшению добычи нефти, сокращению межремонтных периодов работы скважин; в некоторых случаях они столь велики, что вообще затрудняют эксплуатацию. Все методы борьбы с отложениями солей можно подразделить на две группы: методы предотвращения выпадения солей и методы удаления солевых отложений. В комплекс работ по подготовке заводнения входит проверка закачиваемых вод на химическую совместимость с другими водами, с которыми они смешиваются в поверхностных или пластовых условиях. Наиболее приемлемый метод предотвращения выпадения солей в трубах - применение химических реагентов (ингибиторов солеотложений). Их периодически задавливают в пласт или закачивают в затрубное пространство добывающих скважин. Ингибиторы с так называемым пороговым эффектом покрывают микрокристалические ядра образующегося осадка, замедляют их рост и удерживают в растворе во взвешенном состоянии. Наиболее эффективными оказались полифосфаты, органические фосфаты, соли сульфокислот, акрилсульфонаты, гексаметафосфат и триполифосфат натрия, аммофос и другие. Менее эффективно применение воздействия на растворы магнитными полями и ультразвуком, а также использование защитных покрытий (стекло, высокомолекулярные соединения). Для борьбы с отложением солей в нефтеводосборных трубопроводах рекомендуется установка у устья специальных гипсосборников. Отложения солей удаляют с помощью химических реагентов и, в крайнем случае, разбуривают долотом. При химическом методе удаления осадки гипса преобразовывают в водорастворимую соль сульфата натрия и в осадки карбоната кальция, которые затем растворяют солянокислотным раствором и промывают водой. В качестве преобразовывающих реагентов эффективными оказались карбонат и бикарбонат натрия, а также гидроксиды щелочных металлов. Реагент вводят в интервал отложений, периодически его прокачивают или даже создают непрерывную циркуляцию. Затем закачивают солянокислотный раствор и промывают водой. ПРИЛОЖЕНИЕ 2.4.3 Методы борьбы с вредным влиянием газа на работу ЭЦН Увеличивают глубину погружения насоса под динамический уровень, в результате чего возрастает давление на приеме и уменьшается объемный расход свободного газа за счет сжатия, то есть увеличить растворимость газа в нефти. На глубине, где давление на приеме насоса равно давлению насыщения нефти, весь газ растворен в нефти и его вредное влияние прекращается. Развивается прогресс в направлении использования ЭЦН, предназначенных для работы при повышенном входном газосодержании. Для этого в ЭЦН первые 10-15 рабочих ступеней устанавливают на повышенную подачу газожидкостной смеси. (ПРИЛОДЖЕНИЕ) 3 ОХРАНА ТРУДА И ПРОТИВОПОЖАРНАЯ БЕЗОПАСНОСТЬ При эксплуатации скважин, оборудованных УЭЦН обслуживающий персонал подвержен следующим опасностям: Поражение электрическим током. Отравление газом. Поражение в результате взрыва. Поражение в результате аварийной утечки нефти. Высокий уровень электрификации промыслов и жесткие условия эксплуатации электрооборудования (влажность, перепад температур, наличие горючих, взрывчатых и агрессивных веществ) могут привести к электротравмам, возникающим при контакте с токоведущими частями, при пробое электроизоляции и появлении напряжения на нормально токонепроводящих частях, при попадании в поле растекания тока в земле около упавших проводов. Основными источниками высокого напряжения на месторождении являются установки ЭЦН и ШГН, оборудование по подготовки нефти. Вероятность того или иного поражения и его исход зависит от сочетания многих факторов: силы тока, пути тока в организме, времени действия, электрического сопротивления и состояния человека. Смертельно опасным являются переменный ток промышленной частоты силой более 100 мА. Электробезопасность может быть обеспечена только строгим выполнением требований действующих электротехнических нормативов. Все токоведущие части изолированы или помещены на достаточной высоте для защиты от возможного поражения электрическим током. 4 ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ Основной целью природоохранной деятельности является снижение отрицательного воздействия производственных процессов на окружающую среду. Принцип комплексности в управлении включает вопросы определения источников и масштабов загрязнения окружающей среды; оценки экономического ущерба; внедрения природоохранных мероприятий и определения их экономической эффективности; общей оценки природоохранной деятельности управления; разработки эффективных путей снижения отрицательного воздействия производственных процессов на окружающую среду. Опасность загрязнения водоемов, земель и воздушного бассейна на значительных территориях и нанесения ущерба большому числу предприятий, расположенных на территории нефтегазодобывающего района усиливает специфика нефтегазодобывающего предприятия. Территориальная разбросанность промысловых объектов, большая протяженность нефтепроводов и водоводов, создают экологическую опасность применяемых материалов и химических реагентов, нефтепромысловых сточных вод и отходов производства для окружающей среды. При обслуживании скважин, оборудованных ЭЦН возможны опасности для природной среды. При аварийных разливах нефти она проникает в почву. В лесной местности от нефти сохнут корни деревьев, кустарников и травяного покрова. В результате этого образуется сухость и сухая трава, что ведет к пожароопасной ситуации. Локальные загрязнения почвы связаны чаще всего с разливами нефти и нефтепродуктов и их утечках через неплотности и негерметичности в промысловом оборудовании. Загрязнение больших площадей почвы возможно при аварийном фонтанировании нефти. Попадая в почву, нефть опускается вертикально вниз и распространяется вширь. Скорость продвижения нефти зависит от ее свойств, грунта и соотношения нефти, воздуха и воды в многофазной движущейся среде. Движение нефти прекращается при достижении 10-12 % насыщения почвы нефтью, либо при достижении нефти уровня грунтовых вод. Далее нефть перемещается в направлении уклона поверхности грунтовых вод. Наличие нефти в почве и на поверхности вод вызывает опасные экологические последствия. В результате загрязнения происходит разрушение структуры почвы, изменение ее физико-химических свойств. Следственно, снижается водопроницаемость, увеличивается соотношение между углеродом и азотом (за счет углерода нефти), что приводит к ухудшению азотного режима почв. Начинается кислородное голодание почв, что нарушает корневое питание растений. Таким образом, в результате проведенного анализа можно сделать вывод, что основной причиной загрязнения природной среды является разлив нефти и нефтепродуктов на почву и поверхность вод. Учитывая ранее рассмотренные опасности для окружающей среды предусматривается ряд мероприятий, направленных на защиту природной среды от загрязнений нефтью и нефтепродуктами. На территории нефтепромыслов регулярно проверять состояние обваловок вокруг кустов. Не допускать разливов нефти из мерников и тралов сборных установок. Не допускать разливов нефти. Применяемых реагентов вокруг скважин и загрязнения приустьевой зоны. Регулярно проводить проверку технического состояния всего фонда скважин. Добиться полной герметизации систем сбора, сепарации нефти. Установить регулярный контроль над герметичностью резьбовых и фланцевых соединений. ЗАКЛЮЧЕНИЕ Южно – Ягунское месторождение находится на третьей стадии разработки, средняя обводненность продукции составляет 50 %. В ЦДНГ-1 Южно – Ягунского месторождения, размещено 174 скважин основного фонда, в том числе 151 добывающих и 56 нагнетательных. Система разработки трехрядная. Удельные извлекаемые запасы составляют на одну скважину 68,4 тыс.т. Для борьбы с осложнениями при эксплуатации скважин, оборудованных УЭЦН, предлагается следующее: 1. Для снижения количества подъемов насосных установок по причине негерметичности подвески НКТ рекомендуется менять старую подвеску НКТ на новую и вести учет о количестве произведенных спускоподъемных операций т.к. в основном полеты по узлам подвески происходят из-за старения подвески НКТ, а также повысить качество работы бригад ПРС. 2. Рекомендуется внедрять углепластиковые рабочие органы, которые повышают чистоту поверхности проточных каналов рабочего колеса и повышают гидродинамические характеристики насоса. Также углепластиковые рабочие органы легче в 7 раз чугунных рабочих органов, что понизит вибрацию насоса т.к. вибрация является основной причиной всех видов расчленений. 3. Для борьбы с солеотложениями рекомендуется применять углепластиковые рабочие колеса и обработка скважин ингибиторами солеотложений, например, реагентами типа ТХ – 1312 и ХПС – 001 Когалымского завода химреагентов. 4. При осложнении эксплуатации скважин парафиноотложениями следует применять механический способ борьбы, такой как спуск механических скребков и применять двухступенчатую подвеску УЭЦН. СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ Коршак А.А., Шаммазов А.М. Основы нефтегазового дела, Уфа 2016г. Алекперов В.Ю. Первому всегда трудно.Нефть,1994. Отчет по теме «Технологическая схема разработки Южно-Ягунского месторождения». Проектные и фактические показатели разработки по госплановской форме залежей и объектов месторождений НГДУ «Когалымнефть». Отчет по механизированному фонду НГДУ «Когалымнефть» за 2016-2017 г. Нефтепромысловое оборудование: Справочник / Под ред. У.И. Бухаленко, 2017г. Разработка и эксплуатация нефтяных месторождений. Бойко В.С. 1990 Технология и техника эксплуатации нефтяных и газовых скважин. М.Недра 1986. Технология и техника добычи нефти. Щуров В.И.. М. Недра 1983 Нефтепромысловая геология. М.М. Иванова. М. Недра 1983 Охрана окружающей среды. Шарипов А.П.. Ленинград 1978 Инструкции по охране труда НГДУ «Когалымнефть», утвержденные в 2016 году. Безопасная эксплуатация нефтепромысловых объектов. М. Недра.1990 Экологический паспорт НГДУ «Когалымнефть» за 2016 год. Методические рекомендации по выполнению курсового проекта. Орлова С.В., 2018г. ПРИЛОЖЕНИЕ А Схема УЭЦН: компенсатор 1, погружной электродвигатель (ПЭД) 2, протектор 3, приёмная сетка 4 с газосепаратором 5, насос 6, ловильная головка 7, обратный клапан насосный 8, спускной клапан 9, колонна насосно-компрессорных труб (НКТ) 10, колено 11, выкидная линия 12, обратный клапан устьевой 13, манометры 14 и 16, устьевая арматура 15, кабельная линия 17, соединительный вентиляционный ящик 18, станция управления 19, трансформатор 20, динамический уровень жидкости в скважине 21, пояса 22 для крепления кабельной линии к НКТ и насосному агрегату и эксплуатационная колонна скважины 23. ПРИЛОЖЕНИЕ Б Газосепаратор типа МН(К)-ГСЛ (в обозначении «К» – коррозионностойкое исполнение). Сепаратор состоит из трубного корпуса 1 с головкой 2, основания 3 с приемной сеткой и вала 4 с расположенными на нем рабочими органами. В головке выполнены две группы перекрестных каналов 5, 6 для газа и жидкости и установлена втулка радиального подшипника 7. В основании размещены закрытая сеткой полость с каналами 8 для приема газожидкостной смеси, подпятник 9 и втулка 10 радиального подшипника. На валу размещены пята 11, шнек 12, осевое рабочее колесо 13 с суперкавитирующим профилем лопастей, сепараторы 14 и втулки радиальных подшипников 15. В корпусе размещены направляющая решетка гильзы. ПРИЛОЖЕНИЕ Ж Обратный клапан состоит из корпуса 1, с одной стороны которого имеется внутренняя коническая резьба для подсоединения спускного клапана, а с другой стороны – наружная коническая резьба для ввинчивания в ловильную головку верхней секции. Внутри корпуса размещается обрезиненное седло 2, на которое опирается тарелка 3. Тарелка имеет возможность осевого перемещения в направляющей втулке 4. Под воздействием потока перекачиваемой жидкости тарелка поднимается, тем самым открывая клапан. При остановке насоса тарелка опускается на седло под воздействием столба жидкости в напорном трубопроводе, клапан закрывается. На период транспортирования и хранения обратный клапан закрыт крышками 5 и 6. ПРИЛОЖЕНИЕ З Рисунок 6 - Клапан сливной Спускной клапан состоит из корпуса 1, с одной стороны которого имеется внутренняя коническая резьба муфты для соединения к НКТ, имеющей условный диаметр 73 мм, а с другой стороны – наружная коническая резьба для ввинчивания в обратный клапан. ПРИЛОЖЕНИЕ К Рисунок 8- Схема обвязки устья с УЭЦН 1 |