Главная страница
Навигация по странице:

  • Теоретический минимум

  • Контрольные задания Вариант 1

  • Защита лаб по физике. Лабораторная работа 1. 0 Расчет погрешностей измерений при определении объема цилиндра Теоретический минимум


    Скачать 4.87 Mb.
    НазваниеЛабораторная работа 1. 0 Расчет погрешностей измерений при определении объема цилиндра Теоретический минимум
    АнкорЗащита лаб по физике.doc
    Дата27.03.2017
    Размер4.87 Mb.
    Формат файлаdoc
    Имя файлаЗащита лаб по физике.doc
    ТипЛабораторная работа
    #4238
    страница4 из 10
    1   2   3   4   5   6   7   8   9   10

    Лабораторные работы

    №1.3. Определение момента инерции методом трифилярного подвеса

    №1.4. Определение момента инерции металлических колец при помощи маятника Максвелла

    №1.5а. Исследование основного уравнения динамики вращательного движения и определение момента инерции крестообразного маятника

    №1.5б. Определение момента инерции маховика и момента сил трения



    Теоретический минимум

    • Момент инерции материальной точки и абсолютно твёрдого тела. Расчёт момента инерции тел простейшей формы. Теорема Штейнера.

    • Момент силы, момент импульса тела относительно точки и оси. Уравнение моментов.

    • Основное уравнение динамики вращательного движения твёрдого тела.

    • Момент импульса материальной точки относительно точки и относительно оси. Момент импульса твердого тела. Закон сохранения момента импульса.

    • Кинетическая энергия и работа при вращательном движении. Плоское движение твёрдого тела.

    Контрольные задания
    Вариант 1

    1



    . Четыре маленьких шарика одинаковой массы, жестко закрепленые невесомыми стержнями, образуют квадрат. Чему равно отношение моментов инерции системы , где - момент инерции относительно оси совпадающей со стороной квадрата, - момент инерции относительно оси совпадающей с его диагональю?
    2. Определите момент инерции системы относительно оси ОО’ (масса стержня 3m)




    3. Однородный диск массой М приводится во вращение разматывающейся нитью с грузом массой m. Чему равно ускорение груза?

    4. Тонкостенная трубка и кольцо, имеющие одинаковые массы и радиусы, вращаются с одинаковой угловой скоростью. Чему равно отношение величины момента импульса трубки к величине момента импульса кольца.

    5

    . Человек стоит на краю вращающейся по инерции вокруг вертикальной оси карусели. Как изменится частота вращения, если он перейдет в центр карусели?

    6. Чему равна полная кинетическая энергия шара массы m, катящегося по горизонтальной поверхности со скоростью ?
    Вариант 2




    1. Из жести вырезали три одинаковые детали в виде эллипса. Две детали разрезали пополам вдоль разных осей симметрии. Затем все части отодвинули друг от друга на одинаковые расстояния и расставили симметрично относительно оси OO’. Сравните моменты инерции I1, I2 иI3 относительно оси OO’.

    2

    . Определить момент инерции тонкого стержня массой m относительно оси ОО’.


    3. На рисунке к диску, который может свободно вращаться вокруг оси, проходящей через току О, прикладываются одинаковые по величине силы. В каком положении момент сил будет максимальным?




    1) 2) 3) 4) 5)


    4

    . Тонкий обруч радиусом R=1м, способный вращаться вокруг горизонтальной оси, проходящей через точку О перпендикулярно плоскости рисунка, отклонили от вертикали на угол 900 и отпустили. Чему равно угловое ускорение обруча в начальный момент времени?

    5. Человек сидит в центре вращающейся по инерции вокруг вертикальной оси карусели и держит в руках длинный шест за его середину. Как изменится частота вращения, если он повернет шест из вертикального положения в горизонтальное?

    6. Определите линейную скорость центра шара, скатившегося без скольжения с наклонной плоскости высотой h = 0,1 м.
    Вариант 3
    1

    . Три маленьких шарика расположены в вершинах равностороннего треугольника. Момент инерции этой системы относительно оси О1, перпендикулярной плоскости треугольника и проходящей через его центр – I1. Момент инерции этой же системы относительно оси О2, перпендикулярной плоскости треугольника и проходящей через один из шариков - I2. Сравните моменты инерции I1I2.

    2



    . Определите момент инерции проволочного квадрата со стороной dи ее массой m, относительно оси ОО .

    3. Величина момента импульса тела относительно неподвижной оси изменяется по закону , при этом зависимость величины момента сил, действующих на тело, описывается графиком…


    4. При выстреле орудия снаряд вылетел из ствола, расположенного под углом к горизонту, вращаясь вокруг своей продольной оси с угловой скоростью . Момент инерции снаряда относительно этой оси I=15 кг·м2, время движения снаряда в стволе Определите момент сил, который действует на ствол орудия во время выстрела.

    5. Человек сидит в центре вращающейся по инерции вокруг вертикальной оси карусели и держит в руках длинный шест за его середину. Как изменится частота вращения карусели в конечном состоянии, если он переместит шест влево от себя?

    6. Сплошной и полый цилиндры, имеющие одинаковые массы и радиусы вкатываются без проскальзывания на горку. Если начальные скорости этих тел одинаковы, то какое тело поднимется выше?
    Вариант 4

    1

    . Четыре шарика расположены вдоль прямой а. Расстояния между соседними шариками одинаковы. Массы шариков слева направо: 1 г, 2 г, 3 г, 4г. Если поменять местами шарики 2 и 3 , то как изменится момент инерции системы относительно оси O, перпендикулярной прямой и проходящей ее середину?

    2. Прямолинейная однородная проволока длиной и массой m согнута так, что точка перегиба делит проволоку на две части, длины которых относятся как 1:2. Чему равен момент инерции проволоки относительно оси вращения, проходящей через точку перегиба и перпендикулярной плоскости проволоки?

    3. Алюминиевый и стальной цилиндры имеют одинаковую высоту и равные массы. На цилиндры действуют одинаковые по величине силы, направленные по касательной к их боковой поверхности. Сравните моменты сил, действующих на цилиндры.

    4

    . Диск радиуса R и массы m может вращаться вокруг неподвижной оси. На диск намотана нить, к концу которой приложена постоянная сила F. Определите угловое ускорение диска.



    5. Экспериментатор, стоящий на неподвижной скамье Жуковского получает от помощника колесо, вращающееся вокруг вертикальной оси с угловой скоростью . Если экспериментатор повернет ось колеса на угол 1800, то он вместе с платформой придет во вращение с угловой скоростью . Чему равно отношение момента инерции экспериментатора со скамьей к моменту инерции колеса?



    6. Какую долю составляет кинетическая энергия вращательного движения катящегося по горизонтальной поверхности шара от полной кинетической энергии?
    Вариант 5

    1

    . Как изменится момент инерции тонкого кольца, если ось вращения перенести из центра масс на край?

    2

    . Чему равен момент инерции системы относительно оси ОО’ (масса стержня 3m)

    3. Две материальные точки одинаковой массы движутся с одинаковой угловой скоростью по окружностям радиусами и R2. Чему равно отношение моментов импульса точек ?

    4. Маховик в виде сплошного диска, момент инерции которого I, вращаясь при торможении равнозамедленно, за время t уменьшил частоту вращения  в 2 раза. Найдите выражение для момента силы торможения.

    5

    . Два невесомых стержня длины b соединены под углом a1 = 180° и вращаются без трения в горизонтальной плоскости вокруг вертикальной оси О с угловой скоростью w. На одном конце каждого стержня прикреплен очень маленький массивный шарик. В некоторый момент угол между стержнями самопроизвольно уменьшился до a2 = 120°. С какой угловой скоростью стала вращаться система?

    6

    . Для того чтобы раскрутить стержень массы m1и длины (см.рисунок) вокруг вертикальной оси, проходящей перпендикулярно через его середину, до угловой скорости , необходимо совершить работу А1. Какую необходимо совершить работу, для того чтобы раскрутить до той же угловой скорости стержень массы m2=m1/2и длины ?

    Вариант 6
    1. Тонкостенный и сплошной цилиндры имеют одинаковые массы и радиусы. Сравните моменты инерции этих тел

    2

    . Е

    сли ось ОО перенести из положения 1 в положение 2, то как изменится момент инерции двух материальных точек массами m, соединенных невесомым стержнем длиной L?

    3

    . Чему равна сумма моментов двух сил F1 = 2H и F2 = 3Н, приложенных в точке А к диску радиусом R=1 м, вращающемуся относительно оси, прохо-дящей через точку О перпендикулярно плоскости чертежа.?

    4

    . Диск вращается равномерно с некоторой угловой скоростью . Начиная с некоторого момента времени t=0 на него действует момент сил, график временной зависимости которого представлен на рисунке. Постройте график, отражающий зависимость угловой скорости от времени.



    5. Тело массой m1 вертикально падает на свободный конец рычага с плечом (=2) и теряет скорость. Какую скорость приобретает масса m2 (m2=4m1) после удара?

    6. Обруч массой m=0,3 кг и радиусом R=0,5м привели во вращение сообщив ему энергию вращательного движения 1200 Дж, и опустили на пол так, что его ось вращения оказалась п

    араллельной плоскости поля. Какую работу совершила сила трения, если обруч начал двигаться без проскальзывания, имея кинетическую энергию поступательного движения
    200 Дж?

    Вариант 7

    1

    . Определите момент инерции прямоугольной пластинки массы m относительно оси ОО.



    2. Чему равен момент инерции системы относительно оси ОО’ (масса стержня 3m)





    3. Сплошной цилиндр массы mи радиуса R вращается с угловой скоростью ω вокруг оси Z, совпадающей с одной из образующих цилиндрической поверхности. Найдите выражение для момента импульса цилиндра.
    4. Диск радиуса R и массы m может вращаться вокруг неподвижной оси. На диск намотана нить, к концу которой приложена постоянная сила F. Чему равна кинетическая энергия диска после того, как он совершит один оборот?

    6. Шар и полая сфера имеющие одинаковые массы и радиусы, вкатываются без проскальзывания на горку. Если начальные скорости этих тел одинаковы, то какое тело поднимется выше?
    5
    1) 2) 3) 4)


    . Момент импульса тела относительно неподвижной оси изменяется по закону L = аt2. Укажите график, правильно отражающий зависимость от времени величины момента сил, действующих на тело.

    1   2   3   4   5   6   7   8   9   10


    написать администратору сайта