Лекции по физико-химическим методам анализа. Лекции по физикохимическим методам анализа. Лекции по физикохимическим методам анализа
Скачать 281.5 Kb.
|
5. ЛЕКЦИЯ 5. ХроматографияХроматография - физико-химический метод и разделения и анализа жидких и газовых смесей, основанный на распределении их компонентов между двумя фазами - неподвижной и подвижной (элюент), протекающей через неподвижную. Метод впервые предложен в 1903 русским учёным М. Цветом, который пропускал экстракт из листьев через колонку, заполненную CaCO3 и получил отдельные окрашенные зоны. Сейчас это наиболее мощный метод анализа, за него 10 раз присуждались нобелевские премии. В частности, это незаменимый метод биохимического анализа, обнаружения наркотиков или допинга в организме, разделения белков, криминалистической экспертизы (идентификация человека по его запаху в помещении, обнаружения спрятанных ВВ), мониторинга окружающей среды (обнаружения органическихъ загрязнений в воздухе городов, сильнейшего яда - диоксина). Достоинства хроматографического метода - универсальность, экспрессность, высокая чувствительность, точность и разделительная способность. Он позволяет разделять вещества, очень близкие по своим химическим свойствам, такие как лантаноиды, актиноиды, изотопы, органические изомеры. Хроматография использует сорбцию, но в отличие от вышеизложенных методов сорбция происходит в потоке, то-есть компоненты исследуемой смеси распределяются между двумя фазами, одна из которых движется относительно другой. Неподвижной, или стационарной фазой служит твердое вещество (сорбент) либо пленка жидкости на твердом веществе. Её помещают в стеклянную или металлическую трубку - хроматографическую колонку, либо наносят на поверхность пластинки. Жидкая или газообразная подвижная фаза с исследуемой смесью протекает через неподвижную, часть молекул каждого из компонентов успевает сорбироваться на поверхности неподвижной фазы. Устанавливается динамическое равновесие между количеством анализируемого компонента в подвижной и неподвижной фазах. Оставшаяся часть смеси уносится потоком подвижной фазы и сорбируется уже на новом участке сорбента. Задержанные неподвижной фазой части компонентов смеси не участвуют в движении потока подвижной фазы до тех пор, пока не десорбируются и не попадут снова в поток подвижной фазы. Многократно повторяются акты сорбции и десорбции молекул. Молекулы разных компонентов смеси переносятся вдоль слоя неподвижного сорбента с разными скоростями в зависимости от времени "прилипания" к сорбенту, что при достаточной длине слоя сорбента приводит к полному разделению смеси. Смеси разделяется на фракции, которые выходят из колонки по отдельности. В конце колонки первыми начнут выходить с потоком подвижной фазы наиболее слабо сорбируемые молекулы, последними - наиболее сильно сорбируемые. Сравнение со стипль-чезом. Для "торможения" молекул используют такие свойства, как адсорбируемость, способность к ионному обмену, растворимость, окислительно-восстановительный потенциал, стойкость комплексных соединений и др Рассмотрим классификацию хроматографических методов. Классификация по агрегатному состоянию фазВ соответствии с агрегатным состоянием подвижной фазы - элюента различают газовую и жидкостную хроматографию. В качестве газа-носителя используют гелий, азот, аргон и др., а в качестве жидкого элюента - легколетучие растворители (углеводороды, эфиры, спирты).
Для газо-жидкостной хроматографии сорбент готовят нанесением жидкости в виде плёнки (высококипящие углеводороды, сложные эфиры, силоксаны и др.) толщиной несколько мкм на твёрдый носитель с большой удельной поверхностью (0,5-5 м2/г и более.). Классификация на основе природы взаимодействия.1) Адсорбционная хроматография основана на различной сорбируемости разделяемых веществ твёрдым адсорбентом. 2) Распределительная хроматография основана на разной растворимости компонентов смеси (г или ж) в неподвижной фазе (высококипящая жидкость, нанесённая на твёрдый макропористый носитель) и элюенте (аналог жидкостной экстракции). 3) Ионообменная хроматография основана на различии констант ионообменного равновесия между неподвижной фазой (ионитом) и компонентами разделяемой смеси; 4) Эксклюзионная (молекулярно-ситовая или гель-фильтрационная) хроматография основана на разной проницаемости молекул компонентов (ВМС) в неподвижную фазу, частицы которой имеют поры определённого размера (пористые стёкла, молекулярные сита, гели). 5) Осадочная хроматография основана на различной способности разделяемых компонентов выпадать в осадок на твёрдой неподвижной фазе. Классификация по способу проведения процессаХроматография разделяется на колоночную и плоскостную. Рассмотрим сначала колоночную. В неподвижную фазу вводится подвижная фаза, называемая элюентом, а из колонки выходит элюат. Распределение компонентов в виде отдельных зон внутри колонки называется внутренней хроматограммой. Графическое изображение распределения веществ в элюате как функции времени называют внешней, или просто хроматограммой. Существуют три способа проведения хроматографического процесса в колонках, называемые проявительной (элюентной) хроматографией, фронтальной хроматографией и вытеснительнойхроматографией. 1. Проявительная хроматография - наиболее распространенная. Колонку промывают растворителем, затем вводят разделяемую смесь. После этого непрерывно пропускают растворитель. Разделяемые вещества продвигаются в колонке с разными скоростями, на выходе сначала появляется наименее сорбируемый компонент, затем следующий и т.д. Хроматограмма имеет ряд пиков (рис.1; вещество А слабее всех сорбируется, вещество С - сильнее всех). Можно достичь полного разделения, но недостаток - анализируемые компоненты на выходе разбавлены растворителем. 2. Вытеснительная хроматография. В колонку вводят немного разделяемой смеси, затем через колонку непрерывно пропускают раствор вещества - вытеснителя, обладающего лучшей сорбируемостью, чем любой из компонентов. По мере продвижения элюент вытесняет ближайшее вещество С, которое в свою очередь вытесняет вещество В. В результате анализируемая смесь перемещается впереди фронта вытеснителя и скорость движения веществ равна скорости движения вытеснителя. Разделяемые вещества идут последовательно друг за другом. Каждый из компонентов выделяется в чистом виде, но не разделены промежутками (рис.2). 3. Фронтальная хроматография. Анализируемый раствор непрерывно подается в колонку. Из колонки сначала вытекает чистый растворитель, затем, когда сорбент насытится компонентом А (установится динамическое равновесие сорбции-десорбции), он появится в элюате. Когда сорбент насытится веществом В, оно появится в элюате вместе с компонентом А, и т.д. Когда сорбент полностью насытится всеми компонентами разделяемой смеси, состав элюата будет совпадать с составом элюента (рис. 3). Таким образом, в чистом виде можно получить только одно вещество - наименее сорбируемое А, которое первым выйдет из колонки. Часто используется комбинированный метод. Сущность этого метода заключается в том, что после получения первичной хроматограммы проводится обычный проявительный анализ, затем в растворитель добавляют сильно сорбирующееся вещество, которое вытесняет оставшиеся в слое сорбента компоненты. Аппаратурное оформление хроматографических процессовХроматография разделяется на колоночную и плоскостную. Блок-схема колоночного хроматографа приведена на рисунке.
Основным аппаратом является стеклянная или металлическая трубка, заполненная сорбентом. Вариантом колоночной хроматографии является капиллярная хроматография. В этом случае неподвижную фазу наносят на внутренние стенки капилляров. Важную роль играет стабильность работы насоса, потому что основным параметром сигнала от данного вещества является время удерживания - отрезок времени между введением вещества в колонку и выходом данного вещества. Распространённым вариантом газовых хроматографов являются хроматографы с повышенным давлением, что сильно ускоряет процесс получения хроматограммы. Детектор - устройство для идентификации вещества - может быть основан на измерении зависимости одного из простых физических свойств (теплопроводности, плотности, показателя преломления) от времени. Они обязательно предварительно калибруются по чистым компонентам. Один из типов детекторов - катарометр. В цилиндрической полости помещена металлическая спираль, нагреваемая током. При протекании газа-носителя с постоянной скоростью спираль охлаждается, но температура постоянна. При появлении в газе вещества изменяется теплопроводность и изменяется температура. Температура быстро реагирует на появление выходящих с газом-носителем веществ. Другой вариант детектора - пламенно-ионизационный. Выходящий из колонки газ-носитель, содержащий вещество, смешивается с водородом и проходит в форсунку горелки. Пламя ионизирует молекулы элюента, что изменяет электрическое сопротивление между электродами и увеличиваети ток сигнала детектора. Для жидкостной хроматографии применяют спектрофотометрические детекторы (в видимой, УФ, ИК-области), а также рефрактометрические (измеряют показатель преломления). В некоторых случаях для идентификации веществ хроматография сочетается с другими методами (масс-спектрометрией, ИК-, УФ-спектроскопией и др.). В случае ионообменной хроматографии ионов детектором служит кондуктометри, измеряющий сопротивление выходящего из колонки раствора. Для качественного хроматографического анализа определяют время удерживания, а для количественного анализа определяют высоты или площади хроматографических пиков. Здесь на рис. пример хроматограммы. Плоскостная хроматография подразделяется на тонкослойную и бумажную. В первой тонкий слой гранулированного сорбента или пористая плёнка наносится на стеклянную или металлическую пластинки; например, паста оксида алюминия. В случае бумажной хроматографии используют специальную хроматографическую бумагу (похожую на промокашку). Она может быть пропитана реагентом. Перемещение подвижной фазы происходит благодаря капиллярным силам. Исследуемую смесь в жидком виде наносят на стартовую линию (начало пластинки или полоски бумаги), а затем разделяют на компоненты восходящим или нисходящим потоком элюента. Последующее обнаружение (проявление) разделённых веществ на хроматограмме осуществляют при помощи УФ, ИК спектроскопии или обработкой реактивами, образующими с анализируемыми веществами окрашенные соединения. В жидкостно-жидкостной распределительной хроматографии применяется метод разделения на бумаге. Неподвижная фаза покрывает тонким слоем волокна бумаги, а движение жидкой подвижной фазы происходит под действием капиллярных сил. Хроматография на бумаге получила широкое распространение в биохимии для разделения белковых веществ. |