Главная страница

Ббагц6цд. Сеченовские лекции. Лекции по гистологии 12 курс ВесеннийОсенний семестр


Скачать 0.52 Mb.
НазваниеЛекции по гистологии 12 курс ВесеннийОсенний семестр
АнкорБбагц6цд
Дата18.04.2022
Размер0.52 Mb.
Формат файлаdocx
Имя файлаСеченовские лекции.docx
ТипЛекции
#483647
страница16 из 35
1   ...   12   13   14   15   16   17   18   19   ...   35
Олигодендроциты —это самая многочисленная группа клеток нейроглии.Ониокружают тела нейронов в центральной и периферической нервной системе, находятся


  1. составе оболочек нервных волокон и в нервных окончаниях. В разных отделах нервной системы олигодендроциты имеют различную форму и представлены тремя разновидностями:


мантийные клетки, они формируют разные структуры в нервной ткани;
леммоциты, они окружают отростки нервных клеток, формируя чехлы из миелиновых
структур;
концевые, они расположены на конце отростков — концевые глиальные компоненты,
например, инкапсулированные нервные окончания в сосочковом слое дермы. Микроглия —это клетки пришельцы,предполагается,что они имеют

промоноцитарное происхождение, то есть из красного костного мозга. Микроглии являются глиальными макрофагами, они имеют небольшие размеры, преимущественно отростчатой формы, способны к амебоидным движениям. Таким образом на поверхности микроглии имеются 2—3 более крупных отростка, которые в свою очередь делятся на вторичные и третичные ветвления. В составе микроглии имеются все органеллы, но наиболее активен лизосомальный аппарат. При раздражении клеток микроглии их форма меняется, отростки втягиваются, клетки приобретают специфический характер, округляются. В таком виде они называются
зернистыми шарами.


  1. Нервные волокна


Отростки нервных клеток, обычно покрытые оболочками, называются нервными волокнами. В различных отделах нервной системы оболочки нервных волокон значительно отличаются друг от друга по своему строению, поэтому в соответствии с особенностями их строения все нервные волокна делятся на две основные группы — миелиновые и безмиелиновые.Те и другие состоят из отростка нервной клетки,который лежит в центре волокна и поэтому называется осевым цилиндром, и оболочки, образованной клетками олигодендроглии, которые здесь называются нейролеммоцитами (шванновскими клетками).
Безмиелиновые нервные волокна находятся преимущественно в составевегетативной нервной системы. Клетки олигодендроглии оболочек безмиелиновых нервных волокон. Располагаясь плотно, образуют тяжи, в которых на определенном расстоянии друг от друга видны овальные ядра. В нервных волокнах внутренних органов, как правило, в таком тяже располагается не один, а несколько (10—20) осевых цилиндров, принадлежащих различным нейронам. Они могут, покидая одно волокно, переходить в смежное, такие волокна, содержащие несколько осевых

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 78 из 172

цилиндров, называются волокнами кабельного типа. При электронной микроскопии безмиелиновых нервных волокон видно, что по мере погружения осевых цилиндров в тяж леммоцитов последние одевают их как муфтой. Оболочки леммоцитов при этом прогибаются, плотно охватывают осевые цилиндры и, смыкаясь над ними, образуют глубокие складки, на дне которых и располагаются отдельные осевые цилиндры. Сближенные в области складки участки оболочки нейролеммоцита образуют сдвоенную мембрану — мезаксон, на которой как бы подвешен осевой цилиндр. Оболочки нейролеммоцитов очень тонкие, поэтому ни мезаксона, ни границ этих клеток под световым микроскопом нельзя рассмотреть, и оболочка безмиелиновых нервных волокон в этих условиях выявляется как однородный тяж цитоплазмы, "одевающий" осевые цилиндры. С поверхности каждое нервное волокно покрыто
базальной мембраной.
Миелиновые нервные волокна встречаются как в центральной,так и впериферической нервной системе. Они значительно толще безмиелиновых нервных волокон. Диаметр поперечного сечения их колеблется от 1 до 20 мкм. Они также состоят из осевого цилиндра, "одетого" оболочкой из нейролеммоцитов, но диаметр осевых цилиндров этого типа волокон значительно толще, а оболочка сложнее. В сформированном миелиновом волокне принято различать два слоя оболочки: внутренний, более толстый,миелиновый слой и наружный, тонкий,состоящий из
цитоплазмы и ядер нейролеммоцитов — нейролемму.
Миелиновое нервное волокно представляется однородным цилиндром,в которомна определенном расстоянии друг от друга располагаются светлые линии-насечки миелина. Через некоторые интервалы встречаются участки волокна, лишенные миелинового слоя — узловые перехваты — перехваты Ранвье. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, заключенный между смежными перехватами, называется межузловым сегментом, а его оболочка
представлена одной глиальной клеткой.


  1. процессе развития миелинового волокна осевой цилиндр, погружаясь в нейролеммоцит, прогибает его оболочку, образуя глубокую складку, при этом формируется мезаксон. При дальнейшем развитии мезаксон удлиняется, концентрически наслаивается на осевой цилиндр и образует вокруг него плотную слоистую зону миелиновый слой. Наружным слоем (нейролемма) называется периферическая зона нервного волокна, содержащая оттесненную сюда цитоплазму нейролеммоцитов (шванновских клеток) и их ядра.


Осевой цилиндр нервных волокон состоит из нейроплазмы—цитоплазмынервной клетки, содержащей продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме осевого цилиндра лежат митохондрии, которых больше в непосредственной близости к перехватам и особенно много в концевых аппаратах волокон. С поверхности осевой цилиндр покрыт мембраной — аксолеммой, обеспечивающей проведение нервного импульса. Скорость передачи импульса миелиновыми волокнами больше, чем безмиелиновыми. Тонкие волокна, бедные миелином и безмиелиновые волокна проводят нервный импульс со скоростью 1—2 м/ с, тогда как толстые миелиновые волокнасо скоростью 5—120 м/с.


  1. безмиелиновом волокне волна деполяризации мембраны идет по всей плазмолемме, не прерываясь, а в миелиновом волокне возникает только в области перехвата. Таким образом, для миелиновых волокон характерно сальтаторное проведение возбуждения,то есть прыжками.Между перехватами по аксолемме идетэлектрический ток, скорость которого выше, чем прохождение волны деполяризации.


5. Регенерация нейронов и нервных волокон
Нейроны являются несменяемой клеточной популяцией. Им свойственна только внутриклеточная физиологическая регенерация, заключающаяся в непрерывной смене структурных белков цитоплазмы.
Отростки нейронов и соответственно периферические нервы обладают способностью к регенерации в случае их повреждения. При этом регенерации нервных

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 79 из 172







волокон предшествуют явления дегенерации. Нейролеммоциты периферического отрезка волокна уже в первые сутки резко активизируются. В цитоплазме нейролеммоцитов увеличивается количество свободных рибосом и полисом, эндоплазматической сети. В цитоплазме нейролеммоцитов образуется значительное количество шарообразных слоистых структур различных размеров. Миелиновый слой как обособленная зона нейролеммоцита исчезает. В течение 3—4 суток нейролеммоциты значительно увеличиваются в объеме. Нейролеммоциты интенсивно размножаются, и к концу 2-й недели миелин и частицы осевых цилиндров рассасываются. В резорбции продуктов принимают участие как глиальные элементы, так и макрофаги соединительной ткани.
Осевые цилиндры волокон центрального отрезка образуют на концах булавовидные расширения - колбы роста и врастают в лентовидно расположенные нейролеммоциты периферического отрезка нерва и растут со скоростью 1—4 мм в сутки. Рост нервных волокон замедляется в области терминалей. Позднее происходит миелинизация нервных волокон и восстановление терминальных структур.
Нервные окончания
Все нервные волокна заканчиваются концевыми аппаратами, которые получили название нервные окончания. По функциональному значению нервные окончания можно разделить на три группы:
эффекторные (эффекторы);
рецепторные (аффекторные или чувствительные);
концевые аппараты, образующие межнейронные синапсы, осуществляющие связь нейронов между собой.
Эффекторные нервные окончания
Эффекторные нервные окончания представлены двумя типами — двигательные и секреторные.
Двигательные нервные окончания —это концевые аппараты аксоновдвигательных клеток соматической или вегетативной нервной системы. При их участии нервный импульс передается на ткани рабочих органов. Двигательные окончания в поперечно-полосатых мышцах называются нервно-мышечными окончаниями (моторная бляшка). Они представляют собой окончания аксонов клеток двигательных ядер передних рогов спинного мозга или моторных ядер головного мозга. Нервно-мышечное окончание состоит из концевого ветвления осевого цилиндра нервного волокна и специализированного участка мышечного волокна. Миелиновое нервное волокно, подойдя к мышечному волокну, теряет миелиновый слой и погружается в мышечное волокно, вовлекая за собой его плазмолемму. Соединительнотканные элементы при этом переходят в наружный слой оболочки мышечного волокна. Плазмолеммы терминальных ветвей аксона и мышечного волокна
разделены синаптической щелью шириной около 50 нм.


  1. области окончания мышечное волокно не имеет типичной поперечной исчерченности и характеризуется обилием митохондрий, скоплением круглых или слегка овальных ядер. Саркоплазма с митохондриями и ядрами в совокупности образует постсинаптическую часть синапса.


Терминальные ветви нервного волокна в мионевральном синапсехарактеризуются обилием митохондрий и многочисленными пресинаптическими пузырьками, содержащими характерный для этого вида окончаний медиатор — ацетилхолин.При возбуждении ацетилхолин поступает через пресинаптическуюмембрану в синаптическую щель на холинорецепторы постсинаптической (мышечной)
мембраны, вызывая ее возбуждение (волну деполяризации).
Постсинаптическая мембрана моторного нервного окончания содержитфермент ацетилхолинэстеразу, разрушающий медиатор и ограничивающий этим срок его действия. Двигательные нервные окончания в гладкой мышечной ткани построены проще. Здесь тонкие пучки аксонов или их одиночные терминали, следуя между

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 80 из 172

мышечными клетками, образуют четкообразные расширения (варикозы), содержащие холинергические или адренергические пресинаптические пузырьки.
Секреторные нервные окончания имеют простое строение и заканчиваются нажелезе. Они представляют собой концевые утолщения, или четковидные расширения волокна с синаптическими пузырьками, содержащими главным образом ацетилхолин.


  1. Рецепторные нервные окончания


Главная функция афферентных нервных окончаний является восприятие сигналов поступающих из внешней и внутренней среды. Рецептор — это терминальное ветвление дендрита чувствительной (рецепторной) нервной клетки.
Классификация рецепторов:
I. По происхождению:


  1. Нейросенсорные — нейральный источник происхождения, представляют собой рецепторы нервных клеток — первичночувствительные;




  1. Сенсоэпителиальные — имеют не нейральное происхождение, представлены


специальными клетками которые способны воспринимать раздражение — вторичночувствительные, например: инкапсулированные и неинкапсулированные нервные окончания.


  1. По локализации:







экстерорецепторы;
интерорецепторы;
проприорецепторы.


  1. По морфологии: свободные;

несвободные (инкапсулированные: пластинчатые тельца Фатера-Пачини, осязательные
















тельца Мейснера, концевые колбы Краузе, сухожильные органы Гольджи; неинкапсулированные);

IV. По специфичности восприятия (по модальности):
терморецепторы;
барорецепторы;
хеморецепторы;
механорецепторы;
болевые рецепторы;
V. По количеству воспринимающих раздражителей:
мономодальные;
полимодальные.
Межнейронные синапсы
Поляризация проведения нервного импульса по цепи нейронов определяется их специализированными контактами — синапсами.
Классификация синапсов:


  1. По способу передачи:


Химические — проводят нервный импульс в одну сторону; Электрические — проводят нервный импульс в обе стороны;


  1. По локализации:


аксодендритические синапсы; аксоаксональные синапсы; аксосоматические синапсы; сомасоматические синапсы;


https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 81 из 172
















дендродендритические синапсы;


  1. По составу медиатора: адренергические синапсы — норадреналин; холинергические синапсы — ацетилхолин; пептидергические синапсы; пуринергические синапсы;


дофаминергические синапсы;
IV. По выполняемым функциям:
возбуждающие;
тормозящие.
ЛЕКЦИЯ 12. Органы нервной системы


  1. Структура нервной системы




  1. Рефлекторная дуга




  1. Нервы




  1. Спинной мозг




  1. Ствол мозга




  1. Мозжечок




  1. Кора больших полушарий головного мозга




  1. Миелоархитектоника и организация коры




  1. Строение и функции желудочков мозга




  1. Мозговые оболочки




  1. Нервная система осуществляет объединение частей организма в единое целое (интеграцию), обеспечивает регуляцию разнообразных процессов,координациюфункции различных органов и тканей и взаимодействие организма с внешней средой. Нервная система воспринимает многообразную информацию, поступающую из внешней среды и из внутренних органов, перерабатывает ее и генерирует сигналы, обеспечивающие ответные реакции, адекватные действующим раздражителям.


Анатомически нервную систему подразделяют на:
центральную нервную систему, которая включает в себя головной и спинной мозг; периферическую нервную систему, к которой относят периферические нервные узлы
(ганглии), нервы и нервные окончания.
Физиологически (в зависимости от характера иннервации органов и тканей)
нервную систему разделяют на:
соматическую (анимальную) нервную систему, которая регулирует преимущественно
функции произвольного движения;
автономную (вегетативную) нервную систему, которая регулирует деятельность
внутренних органов и желез. Влияя на активность обмена веществ в различных органах и тканях в соответствии с меняющимися условиями их функционирования и внешней среды, она осуществляет адаптационно-трофическую функцию.
Вегетативная нервная система подразделяется на взаимодействующие друг сдругом симпатический и парасимпатический отделы, которые различаются локализацией центров в мозге и периферических узлов, а также характером влияния на внутренние органы.


    • соматическую и автономную нервную систему входят звенья,расположенные




  1. центральной и периферической нервных системах.


Функционально ведущей тканью органов нервной системы является нервная ткань,включающая нейроны и глию.Скопление нейронов в центральной нервнойсистеме обычно называются ядрами, а в периферической нервной системе — узлами (ганглиями). Пучки нервных волокон в центральной нервной системе носят название трактов,в периферической нервной системе они образуют нервы.
Нервные центры —скопление нервных клеток в центральной и периферической

https://psv4.userapi.com/c848428/u192005417/docs/d9/c4c…TwDUNKYAUqFeHk6zVK9BDzc29SRp_UYaej53lXc4fqKTx7PFQ 09.03.2019, 16X54
Стр. 82 из 172

нервных системах, в которых между ними осуществляется синаптическая передача. Они обладают сложной структурой, богатством и разнообразием внутренних и
внешних связей и специализированы на выполнении определенных функций.
По характеру морфофункциональной организации различают:


  1. нервные центры ядерного типа, в которых нейроны располагаются без видимой упорядоченности (вегетативные ганглии, ядра спинного и головного мозга);




  1. нервные центры экранного типа, в которых нейроны, выполняющие однотипные функции, собраны в виде отдельных слоев, сходных с экранами, на которых проецируются нервные импульсы (кора мозжечка, кора полушарий большого мозга, сетчатка глаза). Внутри слоев и между ними имеются многочисленные ассоциативные связи.




    • нервных центрах происходят процессы конвергенции и дивергенции нервного возбуждения, функционируют механизмы обратной связи.


1   ...   12   13   14   15   16   17   18   19   ...   35


написать администратору сайта