Главная страница
Навигация по странице:

  • 1 Содержание Учебные вопросы

  • Текст лекции Введение

  • 1 Контакт двух металлов по зонной теории Слайд 4-7

  • 2. Контактная разность потенциалов

  • Контактные явления в металлах. Лекции по тематическому плану Текст лекции по дисциплине


    Скачать 79.21 Kb.
    НазваниеЛекции по тематическому плану Текст лекции по дисциплине
    Дата28.03.2021
    Размер79.21 Kb.
    Формат файлаdocx
    Имя файлаКонтактные явления в металлах.docx
    ТипЛекции
    #189028

    Тема Контактные явления в металлах

    (наименование темы лекции по тематическому плану)

    Текст лекции по дисциплине Физика

    (наименование дисциплины)

    1 Содержание

    Учебные вопросы

    Стр.

    1

    Контакт двух металлов по зонной теории

    2

    2

    Контактная разность потенциалов

    3

    3

    Эффекты Зеебека и Пельтье

    6

    Текст лекции

    Введение
    Если два различных металла привести в соприкосновение, то между ними возникает разность потенциалов, называемая контактной разностью потенциалов. Итальянский физик А. Вольта (1745—1827) установил, что если металлы А1, Zn, Sn, Pb, Sb, Bi, Hg, Fe, Cu, Ag, Au, Pt, Pd привести в контакт в указанной последовательности, то каждый предыдущий при соприкосновении с одним из следующих зарядится положительно. Этот ряд называется рядом Вольта. Контактная разность потенциалов для различных металлов составляет от десятых до целых вольт.

    1 Контакт двух металлов по зонной теории

    Слайд 4-7

    Вольта экспериментально установил два закона:

    1. Контактная разность потенциалов зависит лишь от химического состава и температуры соприкасающихся металлов.

    2. Контактная разность потенциалов последовательно соединенных различных проводников, находящихся при одинаковой температуре, не зависит от химического состава промежуточных проводников и равна контактной разности потенциалов, возникающей при непосредственном соединении крайних проводников.

    Д ля объяснения возникновения контактной разности потенциалов воспользуемся представлениями зонной теории. Рассмотрим контакт двух металлов с различными работами выхода А1 и А2, т. е. с различными положениями уровня Ферми (верхнего заполненного электронами энергетического уровня). Если А1 < А2(этот случай изображен на рис. 330, а), то уровень Ферми располагается в металле 1выше, чем в металле 2. Следовательно, при контакте металлов электроны с более высоких уровней металла 1будут переходить на более низкие уровни металла 2, что приведет к тому, что металл 1 зарядится положительно, а металл 2— отрицательно. Одновременно происходит относительное смещение энергетических уровней: в металле, заряжающемся положительно, все уровни смещаются вниз, а в металле, заряжающемся отрицательно, — вверх. Этот процесс будет происходить до тех пор, пока между соприкасающимися металлами не установится равновесие, которое, как доказывается в статистической физике, характеризуется совпадением уровней Ферми в обоих металлах (рис. 330,6), Так как для соприкасающихся металлов уровни Ферми совпадают, а работы выхода A1и А2не изменяются (они являются константами металлов и не зависят от того, находятся металлы в контакте или нет), то потенциальная энергия электронов в точках, лежащих вне металлов в непосредственной близости к их по верхности (точки А и Вна рис. 330, б), будет различной. Следовательно, между точками А и Вустанавливается разность потенциалов, которая, как следует из рисунка, равна
    2. Контактная разность потенциалов

    Слайд 8-12

    Разность потенциалов (246.1), обусловленная различием работ выхода контактирующих металлов, называется внешней контактной разностью потенциалов. Чаще говорят просто о контактной разности потенциалов, подразумевая под ней внешнюю.

    Если уровни Ферми для двух контактирующих металлов не одинаковы, то между внутренними точками металлов наблюдается внутренняя контактная разность потенциалов, которая, как следует из рисунка, равна

    В квантовой теории доказывается, что причиной возникновения внутренней контактной разности потенциалов является различие концентраций электронов в контактирующих металлах. " зависит от температуры Тконтакта металлов (поскольку наблюдается зависимость ЕFот Т), обусловливая термоэлектрические явления. Как правило, " << '.

    Если, например, привести в соприкосновение три разнородных проводника, имеющих одинаковую температуру, то разность потенциалов между концами разомкнутой цепи равна алгебраической сумме скачков потенциала во всех контактах. Она, как можно показать (предоставляем это сделать читателю), не зависит от природы промежуточных проводников (второй закон Вольта).

    Внутренняя контактная разность потенциалов возникает в двойном электрическом слое, образующемся в приконтактной области и называемом контактным слоем. Толщина контактного слоя в металлах составляет примерно

    10-10 м, т. е. соизмерима с междоузельными расстояниями в решетке металла. Число электронов, участвующих в диффузии через контактный слой, составляет примерно 2% от общего числа электронов, находящихся на поверхности металла. Столь незначительное изменение концентрации электронов в контактном слое, с одной стороны, и малая по сравнению с длиной свободного пробега электрона его толщина — с другой, не могут привести к заметному изменению проводимости контактного слоя по сравнению с остальной частью металла. Следовательно, электрический ток через контакт двух металлов проходит так же легко, как и через сами металлы, т. е. контактный слой проводит электрический ток в обоих направлениях (12 и 21)одинаково и не дает эффекта выпрямления, который всегда связан с односторонней проводимостью.

    3. Эффекты Зеебека и Пельтье

    Слайд 13-16

    С огласно второму закону Вольта, в замкнутой цепи, состоящей из нескольких металлов, находящихся при одинаковой температуре, э.д.с. не возникает, т. е. не происходит возбуждения электрического тока. Однако если температура контактов не одинакова, то в цепи возникает электрический ток, называемый термоэлектрическим. Явление возбуждения термоэлектрического тока (явление Зеебека), а также тесно связанные с ним явления Пельте и Томсона называются термоэлектрическими явлениями.

    1. Явление Зеебека (1821). Немецкий физик Т. Зеебек (1770—1831) обнаружил, что в замкнутой цепи, состоящей из последовательно соединенных разнородных проводников, контакты между которыми имеют различную температуру, возникает элект рический ток.

    Рассмотрим замкнутую цепь, состоящую из двух металлических проводников 1 и 2 стемпературами спаев Т1(контакт А) и Т2 (контакт В),причем Т1 > Т2 (рис. 331).

    Не вдаваясь в подробности, отметим, что в замкнутой цепи для многих пар металлов (например, Сu—Bi, Ag—Си, Аu — Си) электродвижущая сила прямо пропорциональна разности температур в контактах: ε

    Эта э.д.с. называется термоэлектродвижущей силой. Направление тока при T1 > T2на рис. 331 показано стрелкой. Термоэлектродвижущая сила, например для пары металлов медь — константан, для разности температур 100 К составляет всего 4,25 мВ.

    Причина возникновения термоэлектродвижущей э.д.с. ясна уже из формулы (246.2), определяющей внутреннюю контактную разность потенциалов на границе двух металлов. Дело в том, что положение уровня Ферми зависит от температуры. Поэтому если температуры контактов разные, то разными будут и внутренние контактные разности потенциалов. Таким образом, сумма скачков потенциала отлична от нуля, что и приводит к возникновению термоэлектрического тока. Отметим также, что при градиенте температуры происходит и диффузия электронов, которая тоже обусловливает термо-э.д.с.

    Явление Зеебека не противоречит второму началу термодинамики, так как в данном случае внутренняя энергия преобразуется в электрическую, для чего используется два источника теплоты (два контакта). Следовательно, для поддержания постоянного тока в рассматриваемой цепи необходимо поддерживать постоянство разности температур контактов: к более нагретому контакту непрерывно подводить теплоту, а от холодного — непрерывно ее отводить.

    Явление Зеебека используется для измерения температуры. Для этого применяются термоэлемент, или термопары — датчики температур, состоящие из двух соединенных между собой разнородных металлических проводников. Если контакты (обычно спаи) проводников (проволок), образующих термопару, находятся при разных температурах, то в цепи возникает термоэлектродвижущая сила, которая зависит от разности температур контактов и природы применяемых материалов. Чувствительность термопар выше, если их соединять последовательно. Эти соединения называются термобатареями (или тремостолбиками). Термопары применяются как для измерения ничтожно малых разностей температур, так и для измерения очень высоких и очень низких температур (например, внутри доменных печей или жидких газов). Точность определения температуры с помощью термопар составляет, как правило, несколько кельвин, а у некоторых термопар достигает  0,01 К. Термопары обладают рядом преимуществ перед обычными термометрами: имеют большую чувствительность и малую инерционность, позволяют проводить измерения в широком интервале температур и допускают дистанционные измерения.

    Явление Зеебека в принципе может быть использовано для генерации электрического тока. Так, уже сейчас к. п.д. полупроводниковых термобатарей достигает  18%. Следовательно, совершенствуя полупроводниковые т ермоэлектрогенераторы, можно добиться эффективного прямого преобразования солнечной энергии в электрическую.

    2. Явление Пельтье (1834). Французский физик Ж. Пельтье (1785—1845) обнаружил, что при прохождении через контакт двух различных проводников электрического тока в зависимости от его направления помимо джоулевой теплоты выделяется или поглощается дополнительная теплота. Таким образом, явление Пельтье является обратным по отношению к явлению Зеебека. В отличие от джоулевой теплоты, которая пропорциональна квадрату силы тока, теплота Пельтье пропорциональна первой степени силы тока и меняет знак при изменении направления тока.

    Рассмотрим замкнутую цепь, состоящую из двух разнородных металлических проводников 1 и 2(рис. 332), по которым пропускается ток I' (его направление в данном случае выбрано совпадающим с направлением термотока (на рис. 331 при условии T1 > T2)). Согласно наблюдениям Пельтье, спай А, который при явлении Зеебека поддерживался бы при более высокой температуре, будет теперь охлаждаться, а спай В — нагреваться. При изменении направления тока I' спай А будет нагреваться, спай В — охлаждаться.

    Объяснить явление Пельтье можно следующим образом. Электроны по разную сторону спая обладают различной средней энергией (полной — кинетической плюс потенциальной). Если электроны (направление их движения задано на рис. 332 пунктир ными стрелками) пройдут через спай В и попадут в область с меньшей энергией, то избыток своей энергии они отдадут кристаллической решетке и спай будет нагреваться. В спае А электроны переходят в область с большей энергией, забирая теперь недоста ющую энергию у кристаллической решетки, и спай будет охлаждаться.

    Явление Пельтье используется в термоэлектрических полупроводниковых холодильниках, созданных впервые в 1954 г. под руководством А. Ф. Иоффе, и в некоторых электронных приборах.

    3. Явление Томсона (1856). Вильям Томсон (Кельвин), исследуя термоэлектрические явления, пришел к заключению, подтвердив его экспериментально, что при прохождении тока по неравномерно нагретому проводнику должно происходить дополнительное выделение (поглощение) теплоты, аналогичной теплоте Пельтье. Это явление получило название явления Томсона. Его можно объяснить следующим образом. Так как в более нагретой части проводника электроны имеют бблыпую среднюю энергию, чем в менее нагретой, то, двигаясь в направлении убывания температуры, они отдают часть своей энергии решетке, в результате чего происходит выделение теплоты Томсона. Если же электроны движутся в сторону возрастания температуры, то они, наоборот, пополняют свою энергию за счет энергии решетки, в результате чего происходит поглощение теплоты Томсона.

    Вывод

    Контактная разность потенциалов — это разность потенциалов, возникающая при соприкосновении двух различных твердых проводников, имеющих одинаковую температуру. Различают внутреннюю и внешнюю разности потенциалов в зависимости от того, рассматриваются ли потенциалы эквипотенциального объема контактирующих проводников или же потенциалы вблизи их поверхности.

    Контактная разность потенциалов не может быть измерена вольтметром напрямую, однако может проявляться на вольт-амперных характеристиках контакта. Примером устройства, где внешняя контактная разность потенциалов двух металлов влияет на ВАХ, может служить ламповый диод. Внутренняя контактная разность потенциалов лежит в основе работы таких полупроводниковых приборов, как диод на p-n переходе, диод с контактом металл-полупроводник, транзистор, а также ряда других.


    написать администратору сайта