Главная страница
Навигация по странице:

  • Классификация эксплуатационных материалов

  • Эксплуатационные требования к автомобильным бензинам

  • Свойства автомобильных бензинов

  • Поверхностное натяжение

  • Давление насыщенных паров.

  • Низкотемпературные свойства.

  • Антидетонационные свойства

  • Лекция 1 Классификация эксплуатационных материалов. А втомобильные бензины. Дизельные топлива


    Скачать 79.41 Kb.
    НазваниеЛекция 1 Классификация эксплуатационных материалов. А втомобильные бензины. Дизельные топлива
    Дата19.09.2021
    Размер79.41 Kb.
    Формат файлаdocx
    Имя файла12_ekspluatatsionnyye_materialy_ikh_primeneniye_khraneniye_utili.docx
    ТипЛекция
    #234065
    страница1 из 13
      1   2   3   4   5   6   7   8   9   ...   13

    Учебная дисциплина «Эксплуатационные материалы, их применение, хранение, утилизация, пути экономии»
    Лекция № 1 «Классификация эксплуатационных материалов. Автомобильные бензины. Дизельные топлива»
    Так как автомобильный транспорт потребляет значительную часть жидкого топлива, проблема экономии горюче-смазочных материалов для этой отрасли является наиболее острой. В связи с повышением роли и значения ГСМ в экономике страны, как фактора увеличения надёжности, долговечности и экономичности работы техники, возникла потребность иметь научную основу их применения. Это привело к появлению на стыке ряда научных дисциплин новой прикладной отрасли науки, получившей название "химмотология" от слов "химия", "мотор" и "логос" (наука). Химмотология - это направление науки и техники, занимающееся изучением эксплуатационных свойств и качеств топлив, смазок и специальных жидкостей, теорией и практикой их рационального применения в технике.

    Классификация эксплуатационных материалов

    Общая схема классификации эксплуатационных материалов, используемых на автомобильном транспорте представлена на рисунке 1.2.


    Рисунок 1.2 - Классификация автомобильных эксплуатационных материалов
    В пределах каждой подгруппы существует свои классификационные структуры в соответствии с которыми каждый вид делится на группы и подгруппы в зависимости от уровня потребительских свойств и предполагаемой области применения.

    Эксплуатационные требования к автомобильным бензинам

    Топлива для карбюраторных двигателей должны иметь такие физико-химические свойства, которые обеспечивали бы:

    • нормальное и полное сгорание полученной смеси в двигателе (без возникновения детонации);

    • образование топливовоздушной смеси требуемого состава;

    • бесперебойную подачу бензина в систему питания двигателя;

    • отсутствие коррозии и коррозионных износов деталей двигателя;

    • возможно меньшее образование отложений во впускном трубопроводе, камерах сгорания и других местах двигателя;

    • сохранение качеств при хранении, перекачках и транспортировке.

    Свойства автомобильных бензинов

    Карбюрационные свойства

    Плотность. Под плотностью понимают массу вещества, отнесённую к единице его объёма. Плотность бензина (как и его вязкость) влияет на расход топлива через калиброванные отверстия жиклёров карбюратора. Уровень бензина в поплавковой камере также зависит от плотности. Для автомобильных бензинов плотность при 20 0С должна находиться в пределах от 690 до 750 кг/м3.

    Плотность топлива определяется ареометром, гидростатическими весами и пикнометром.

    Вязкость (внутреннее трение) - свойство жидкостей, характеризующее сопротивление действию внешних сил, вызывающих их течение.

    Величина вязкости может быть выражена в абсолютных единицах динамической, кинематической вязкости или в условных единицах.

    В системе СИ за единицу динамической вязкости h принята вязкость такой жидкости, которая оказывает сопротивление 1Н взаимному сдвигу двух слоёв жидкости площадью 1 м2, находящихся на расстоянии 1 м один от другого и перемещающихся с относительной скоростью 1 м/с.

    Единица измерения динамической вязкости [кг/(м*с)].

    Вязкость оказывает превалирующее влияние на весовое количество топлива, протекающее через жиклёр в единицу времени. Снижение температуры вызывает увеличение вязкости бензина, а это вызывает снижение его расхода. Расход бензина через жиклёр при изменении температуры от 40 до - 40 0С снижается на 20 - 30 %.

    Поверхностное натяжение - характеризуется работой, необходимой для образования 1 м2 поверхности жидкости (т.е. для перемещения молекул жидкости из её объёма в поверхностный слой площадью в 1 м2) и выражается в Н/м. Поверхностное натяжение, наряду с вязкостью, влияет на степень распыливания бензина. Чем меньше его величина, тем меньших размеров получаются капли. Поверхностное натяжение всех автомобильных бензинов одинаково и при +20 0С равно 20 - 24 мН/м (в 3,5 раза меньше чем у воды).

    Испаряемость. Под испаряемостью топлива понимают его способность переходить из жидкого состояния в парообразное.

    Испарение топлива является необходимым условием его сгорания, так как смешивается с воздухом и воспламеняется только паровая фаза. Автомобильные бензины должны обладать такой испаряемостью, чтобы обеспечивать лёгкий пуск двигателя, его быстрый прогрев и полное сгорание бензина после этого, а также исключить образование паровых пробок в топливной системе.

    Практически испаряемость топлив для двигателей оценивают, определяя их фракционный состав методом разгонки на стандартном аппарате (для бензинов измеряют ещё и давление насыщенных паров)

    Давление насыщенных паров. Давление паров испаряющегося бензина на стенки герметичной ёмкости называют давлением (упругостью) насыщенных паров. Давление насыщенных паров возрастает с при повышении температуры.

    Стандартом ограничивается верхний предел давления паров до 67 кПа летом и от 67 до 93 кПа зимой. Бензины с высокой упругостью паров склонны к повышенному образованию паровых пробок в топливоподающей системе; их использование влечёт за собой снижение наполнения цилиндров, падение мощности. Увеличиваются также потери от испарения такого бензина при хранении на складах и в топливных баках.

    Низкотемпературные свойства. Температура застывания автомобильных бензинов обычно ниже минус 60 0С, поэтому этот показатель для них не регламентируется. Но при эксплуатации двигателя в условиях низких температур могут возникнуть осложнения связанные с образованием в бензинах кристаллов льда. Установлено, что с понижением температуры растворимость воды в бензинах уменьшается. При быстром охлаждении излишняя влага, не успевшая перейти в воздух, выделяется в виде мелких капель, которые при отрицательных температурах превращаются в кристаллы льда. Забивая фильтры, кристаллы нарушают подачу бензина в двигатель.

    Антидетонационные свойства

    Детонационная стойкость, оцениваемая октановым числом (ОЧ), - важнейшее свойство топлива, обеспечивающее работу двигателя без детонации.

    Октановым числом топлива называют процентное содержание (по объёму) изооктана в искусственно приготовленной смеси, состоящей из изооктана (ОЧ = 100) и нормального гептана (ОЧ = 0), по своей детонационной стойкости равноценной испытуемому топливу.

    Определяют ОЧ моторным и исследовательским методами.

    Коррозионные свойства

    Топливо вызывает коррозию металлов и в жидком и в газообразном состоянии, коррозионное воздействие оказывают и продукты его сгорания.

    От углеводородов топлива металлы не корродируют, коррозии способствует наличие в топливе коррозионно-агрессивных соединений: водорастворимых (минеральных) кислот и щелочей, активных сернистых соединений, воды, органических кислот.

    Вода, а также водорастворимые кислоты и щёлочи в товарных бензинах отсутствуют, могут попасть при транспортировке и хранении.

    Органические кислоты всегда содержатся в топливе (менее активны по сравнению с неорганическими), но их содержание заметно возрастает при длительном хранении. Содержание органических кислот характеризуют кислотностью. Этот показатель нормируют количеством щелочи (в миллиграммах), потребной для нейтрализации кислот, содержащихся в 100 мл топлива.

    Сернистые соединения по коррозионной агрессивности подразделяют на активные и неактивные. Их содержание в топливе отрицательно сказывается на таких его свойствах, как стабильность, способность к нагарообразованию, коррозионная агрессивность и др. Сернистые соединения способствуют повышению коррозионной агрессивности продуктов сгорания, приводят к повышению твёрдости нагара. Присутствие данных соединений в топливе крайне нежелательно. Максимальное содержание серы в отечественных бензинах регламентируется соответствующими стандартами и составляет 0,12 %.

    Стабильность топлива

    Под стабильностью топлива понимают его способность сохранять свойства в допустимых пределах для конкретных эксплуатационных условий. Условно различают физическую и химическую стабильность топлива. Физическая стабильность - способность топлива сохранять свой фракционный состав и однородность.

    Химическая стабильность - способность топлива сохранять свой химический состав. В результате окисления бензинов в процессе хранения образуются растворимые органические кислоты и смолистые вещества. Содержанием фактических смол - продуктов реакций окисления, полимеризации и конденсации определяют степень осмоления бензинов. При содержании фактических смол в пределах, допускаемых стандартами (7 - 15 мг/100мл), двигатели длительное время работают без повышенного смоло- и нагарообразования. Способность бензина сохранять свой состав неизменным при соблюдении условий перевозки, хранения и использования (стабильность) оценивают индукционным периодом. Этот показатель оценивают по времени в минутах от начала окисления бензина до активного поглощения им кислорода в лабораторной установке при искусственном окислении бензина (t = 100 0C, в атмосфере сухого чистого кислорода при давлении 0,7 МПа). Это время для бензинов находится в пределах от 600 до 900 мин. Для повышения химической стабильности применяют гидроочистку бензинов и вводят в их состав специальные многофункциональные антиокислительные присадки.
      1   2   3   4   5   6   7   8   9   ...   13


    написать администратору сайта