Главная страница
Навигация по странице:

  • Магниторазведочные работы на стадии выявления и подготовки объектов

  • Выявление и подготовка структурно-литологических ловушек, связанных с погребенными рифами

  • Выявление аномалий типа «залежь» по магнитному полю

  • Применение ядерно-геофизических методов при изучении нефтегазоперспективных территорий.

  • Лекция № 6 Тема: Роль, задачи и принципы интерпретации данных электроразведки.

  • курс_специалитет_2014.doc. курс_специалитет_2014. Лекция 1 Тема Введение Предмет геофизики Геофизика (Ге ge Земля и physike физика основы естествознания)


    Скачать 341.83 Kb.
    НазваниеЛекция 1 Тема Введение Предмет геофизики Геофизика (Ге ge Земля и physike физика основы естествознания)
    Анкоркурс_специалитет_2014.doc.docx
    Дата30.04.2018
    Размер341.83 Kb.
    Формат файлаdocx
    Имя файлакурс_специалитет_2014.docx
    ТипЛекция
    #18694
    страница8 из 15
    1   ...   4   5   6   7   8   9   10   11   ...   15
    Тема: Использование данных магниторазведки при поисках месторождений углеводородов.
    Аэромагниторазведка
    Аэромагнитная съемка с высокочувствительными квантовыми магнитометрами позволяет выделять по характеру поля и его значениям аномалии, обусловленные структурами в осадочной толще, а также определять местоположение и простирание разломов, осложняющих эти структуры. Такие аномалии в платформенных областях проявляются на региональном фоне, обусловленном в основном строением кристаллического фундамента и составом слагающих его пород.

    Было установлено, что структуры второго порядка (валы, рвы) в осадочной толще связаны с региональными магнитными аномалиями Восточно-Европейской платформы. Простирания структур совпадают с простиранием аномалий магнитного поля, а в ряде регионов, например в центральной и восточной частях платформы,— местоположение многих структур второго порядка с простиранием и полосовидных магнитных аномалий.

    Основная причина возникновения магнитных аномалий это наличие геологических тел, отличающихся по намагниченности от вмещающих пород. Чаще всего аномалии вызываются изверженными или метаморфическими горными породами, железными рудами. Форма каждой аномалии в плане зависит от формы и пространственного положения объекта поисков, что объясняется тесной связью магнитной восприимчивости породы с содержанием ферромагнитных минералов в ней. Чем больше ферромагнитных минералов в породе, тем выше ее магнитная восприимчивость и интенсивность намагничивания.

    Таким образом, с изменением магнитных свойств пород меняется и величина напряженности магнитного поля над ними. Часто изверженные (базальты, диабазы) и метаморфические (железистые кварциты и др.) породы содержат значительное количество ферромагнитного минерала (магнетита). Такие породы вызывают, как правило, резкое усиление магнитного поля, т.е. создают магнитные аномалии. Осадочные породы практически слабомагнитны, что объясняется незначительным присутствием в них ферромагнетиков. Величина магнитных полей над ними близка к нормальному полю. Наиболее сильные аномалии создаются в районе залегания железорудных пород. Следовательно, по величине магнитных аномалий можно делать заключение о породах, залегающих в данном районе.

    Большое разнообразие горных пород по интенсивности намагничивания создает благоприятные условия для применения магниторазведки при геологическом картировании и помогает установить границы распространения пород с различными магнитными свойствами.

    Зоны разломов, сопровождаемые жильными образованиями, зачастую хорошо отмечаются по изменениям магнитного поля, связанным с появлением ферромагнитных минералов в зонах минерализации. Это обстоятельство широко используют при картировании зон разломов в связи с поисками многих полезных ископаемых.

    Решающим фактором образования магнитных аномалий является не абсолютная величина намагниченности искомых объектов, а различие в интенсивности намагниченности вмещяющих пород и руд. Известны случаи обнаружения оконтуривания соляных куполов (æ=0) по понижениям магнитного поля на общем повышенном фоне, созданном магнитными вмещающими породами. Иногда успешно осуществляется поиски россыпей золота и платины (æ=0) при условии, что, подстилающие россыпи, коренные породы немагнитны. В этом случае по повышенному магнитному полю легко обнаружить погребенные долины, где скапливаются тяжелые минералы, в число которых входит и магнетит.

    Так как магнитные аномалии обусловлены геологическими объектами и их магнитными свойствами, то форма и размеры аномалий будут тесно связаны с геометрической характеристикой объекта и его положением в пространстве. Поэтому по форме аномалий можно предположить и форму геологического объекта. Изометричной аномалии в плане соответствуют столбообразные штокообразные тела. Аномалия, у которой обе ветви уходят в отрицательное поле, отвечает телам небольшого распространения на глубину.

    Вытянутым аномалиям, у которых длина почти в 4 раза превышает ширину, соответствует таким геологическим телам как мощные и тонкие пласты различного прострирания и падения, линзы, жилы, дайки. Вытянутые аномалии одного знака свидетельствуют о том, что у объекта нижняя кромка не ограничена по глубине. Если есть рядом аномалии с минимальными значениями другого знака, то это соответствует объекту с ограниченной глубиной.
    Магниторазведочные работы на стадии выявления и подготовки объектов
    Метод основан на изучении особенностей магнитного поля, связанных с различными магнитными свойствами горных пород. Изменение магнитных свойств и разные формы залегания магнитных пород создают различные магнитные аномалии, т. е. отклонения напряженности геомагнитного поля в данном районе от нормальных его значений для данной области.

    В некоторых платформенных районах при благоприятных геологических условиях магниторазведка может использоваться для поисков зон поднятий. Для этого необходимо изучение по уже известным районам связи между тектоникой и характером магнитного поля и распределением магнитных аномалий.

    Краевые предгорные прогибы, выполненные мощными толщами осадочных, практически немагнитных пород, в общем плане обычно характеризуются региональными минимумами, которые могут осложняться в зонах разломов и внедрения по ним изверженных пород отдельными положительными магнитными аномалиями.

    При благоприятных геологических условиях по данным магниторазведки могут выделяться крупные структурные зоны и производиться трассирование зон нарушений.

    Магниторазведка успешно применяется в областях развития соляной тектоники для поисков соляных куполов. Она была эффективно использована в Днепровско-Донецкой впадине, где соляные купола выносят с больших глубин обломки сильно магнитных диабазов и поэтому характеризуются четкими магнитными аномалиями (до 500—1000у). Магниторазведка может также применяться для поисков соляных куполов, исходя из диамагнитных свойств соли.

    При поисках нефти и газа применяется в основном аэромагнитная съемка. Наилучшая эффективность магниторазведки отмечается при комплексном проведении магниторазведки с другими геофизическими методами. Магниторазведка обычно эффективно комплексируется с гравиметрической съемкой. Большим преимуществом этого метода является возможность исследовать обширные территории с затратой сравнительно малого времени, особенно при применении аэромагниторазведки.
    Выявление и подготовка структурно-литологических ловушек, связанных с погребенными рифами
    Магниторазведкане является поисковым методом при выявлении рифов, так как рифовые массивы не магнитны и не формируют аномалии в магнитном поле, однако ее результаты следует привлекать для прогнозирования рифовых объектов. В ряде районов отмечается приуроченность рифовых тел к очагам платформенного магнетизма или к зонам глубинных разломов, которым соответствуют линейные магнитные максимумы. Установлена приуроченность одиночных атоллов к относительным локальным максимумам магнитного поля.
    Выявление аномалий типа «залежь» по магнитному полю
    Из практики геолого-геофизических исследований известно, что над месторождениями нефти и газа развиты ореолы рассеяния флюидов УВ, которые воздействуют на вмещающие и перекрывающие залежь породы. Эти воздействия приводят к изменению их первичного состава за счет развития эпигенетических минералов. Это соответственно отражается на физических свойствах пород, что служит обоснованной геологической предпосылкой применения геофизических методов для прямого прогнозирования нефтегазоносности.

    В качестве примера воздействия УВ на вмещающие породы залежи можно привести Бавлинское месторождение (Республика Татарстан). Здесь отмечается переход красноцветных покрывающих образований в пестроцветные, отражающий, по-видимому, изменение соединений окисного железа в закисное вследствие диффузии УВ с глубины. Ферромагнитные минералы отложений за пределами залежи в меньшей степени подвергаются химическим воздействиям и сохраняются в первоначальном виде. Такие эпигенетические преобразования пород приводят к перераспределению намагниченности отложений в сводовой части структуры и на ее флангах, что создает благоприятные предпосылки для ее отражения в магнитном поле. Аналогичные изменения отмечаются и на Пашнинском месторождении в Тимано-Печорской провинции и ряде других структур.

    Новопортовское месторождение характеризуется многоэтажностью нефтегазоносности - более 10 залежей, распределенных по разрезу от доюрского основания до сеномана включительно. Залежи газовые и газоконденсатные с нефтяной оторочкой. Общий контур нефтегазоносности 10х35 км. В морфологии магнитного поля область отрицательных значений в виде кольцевой аномалии приурочена к периферийным частям контура нефтегазоносности при равномерном знакопеременном поле Δt по площади центральной части месторождения.

    Некоторые отмечаемые отличия в амплитуде аномалий объясняются тем, что интенсивность процессов изменения первичного состава пород и соответственно магнитных свойств в разных частях ореола различна, отсюда вариации в морфологии магнитного поля и его значениях над объектами нефти и газа при сохранении в целом картины, отражающей результаты моделирования.

    Размеры ореола измененных пород месторождения в магнитном поле рекомендуется определять по нулевой линии трансформированного поля, совпадающей с переходом поля at в положительную область, т.е. нулевая линия ограничивает внешний контур ореола измененных под влиянием флюидов УВ пород и поэтому ее следует принимать как контур аномалии типа "залежь" (АТЗ).

    Подобная картина изменения магнитного поля отмечается и над Мало-Ямальским месторождением газа, расположенным на том же Новопортовском валу. Месторождение однопластовое. Залежь приурочена к сеноманской части разреза. Установленная однотипность отражения в морфологии магнитного поля двух разноплановых месторождений (Новопортовского и Мало-Ямальского) свидетельствует о едином процессе миграции флюидов УВ через толщу осадочных образований, возможно, из глубины до дневной поверхности. В одном случае создается многопластовое, в другом - однопластовое месторождения, определяемые, по-видимому, условиями формирования ловушек УВ.

    В результате обработки материалов аэромагнитной съемки по технологии, примененной на Новопортовском месторождении, на Хариусной площади выделена АТЗ, практически совпадающая с положением "яркого пятна" по данным МОГТ .

    Попутно отметим, что в морфологии магнитного поля в виде аномалии типа "уступ" выделяется граница выклинивания отложений терригенного состава, в которых прогнозируется структурно-литологическая ловушка. Данная граница прослеживается в магнитном поле и за пределами Хариусной площади в юго-западном направлении более чем на 15 км (до границы выполненной аэромагнитной съемки). Этот факт является дополнительным доказательством возможности использования аэромагнитной съемки для решения задач нефтегазовой геологии.


    Применение ядерно-геофизических методов при изучении нефтегазоперспективных территорий.
    Ядерная геофизика объединяет физические методы поисков и разведки радиоактивных руд по их естественной радиоактивности (радиометрия) и поэлементного анализа горных пород путем изучения вызванной радиоактивности (ядерно-геофизические методы). Находясь на стыке между геофизикой и геохимией, она по своей сущности, методике и технике наблюдений относится к геофизическим методам, хотя решает некоторые геохимические задачи. Ядерная геофизика отличается "близкодействием", т.е. малой глубинностью исследований (десятки см по породе) вследствие быстрого поглощения ядерных излучений окружающими породами и воздухом. Однако продукты радиоактивного распада способны мигрировать, образуя вокруг пород и руд газовые, водные и механические ореолы рассеяния, по которым можно судить о радиоактивности коренных пород.

    Основными методами радиометрии являются гамма-съемка (ГС), предназначенная для изучения интенсивности гамма-излучения, и эманационная съемка (ЭС), при которой по естественному альфа излучению почвенного воздуха определяют концентрацию в нем радиоактивного газа - радона. Гамма-методы (ГМ) служат для поисков и разведки не только радиоактивных руд урана, радия, тория и других элементов, но и парагенетически или пространственно связанных с ними нерадиоактивных полезных ископаемых (редкоземельных, металлических, фосфатных и др.). С их помощью можно определять абсолютный возраст горных пород. Гамма- и эманационную съемки используют также для литологического и тектонического картирования и решения других задач.

    К ядерной геофизике относится так называемый геокосмический метод, основанный на подземной регистрации космических мюонов (мю-мезонов).

    Искусственная радиоактивность возникает при облучении горных пород и сред гамма-квантами или нейтронами. Измеряя те или иные характеристики наведенного поля, можно судить о гамма- и нейтронных свойствах горных пород, которые определяются химическим составом элементов и физическими свойствами пород. Существует множество искусственных ядерно-физических методов определения химического состава и физических свойств горных пород, основанных на использовании либо нейтронов (нейтрон-нейтронные, нейтрон-гамма и др.), либо гамма-излучений (гамма-гамма, гамма-нейтронный, рентгенорадиометрический и др.).

    Над многими известными месторождениями нефти и газа наблюдается понижение γ – активности ( в основном ее радиевой составляющей). Это явление объясняется тем, что в районах с неотектоникой породы над сводами структур более грубозернистые, чем на крыльях этих структур, поскольку в момент отложения осадков глубина бассейна на своде была меньше. Построение карт радиоактивности глубоких отложений по данным γ – каротажа позволяет выделять зоны тектонических нарушений, по которым поднимались радиоактивные воды ил жидкие углеводороды. Из-за изменения термобарических условий уран, растворенный в водах или входящий в состав металлоорганических соединений, выпадает в осадок и обеспечивает повышенную активность зон разломов.

    Метод радиометрической съемки для поисков нефтяных месторождений впервые был применен Л.Н. Богоявлинским и А.А. Ломакиным в 1926 г. в Майкопском нефтеносном районе. Использовав ионизационную камеру, они получили аномальное поле радиоактивности над нефтяной залежью, не связанной со структурой (шнурковая залежь).

    Теоретические предпосылки возможности применения методов радиогеохимии при прогнозировании и поисках месторождений нефти и газа, сформулированные рядом российских и иностранных ученых (Х.Лаунберг, С.Хаддет, Л.Миллер, У.Кревс, Д.Пирсон, Д.Сикка, А.Ф.Алексеев, Р.П.Готтих и др.), основываются на теории вертикальной миграции УВ из залежей.

    Продукты распада УВ — углекислый газ, вода, сероводород и другие мигрирующие в результате диффузии и фильтрации из залежи газы и воды — стимулируют эпигенетические процессы, приводящие к изменению физико-химических параметров среды, что выражается в преобразовании пород надпродуктивного комплекса, возникновении специфичных минеральных ассоциаций, нарушении окислительно-восстановительных обстановок и перераспределении некоторых химических элементов, в том числе радиоактивных.

    Под воздействием эпигенетических процессов, вызванных влиянием УВ-залежей, над месторождениями нефти и газа на протяжении длительного геологического времени происходит формирование специфического радиогеохимического поля, характеризующегося своеобразными полями распределения общей радиоактивности, уровнями накопления радиоактивных элементов и характером их взаимосвязи.

    Практика показывает, что радиационная производная (мощность экспозиционной дозы) над и вокруг залежей УВ варьирует в незначительном диапазоне по сравнению с фоновыми значениями. В свое время этот факт во многом обусловил ограничение применения радиогеохимических методов. Появление современной лабораторно-аналитической базы и измерительной аппаратуры, новых типов детекторов и методических приемов, позволяющих выявлять слабые изменения радиогеохимического поля, возродило интерес к применению радиогеохимических методов для прогнозирования и поисков месторождений нефти и газа.

    Комплекс радиогеохимического картирования включает термолюминесцентную, радиометрическую и гамма-спектрометрическую съемки по поверхности. Плотность измерений выбирается согласно решаемым геологическим задачам, детальности исследований, масштабу объекта.

    Методика термолюминесцентной радиометрической съемки разработана в Институте разведочной геофизики и геохимии (КНР)*. В качестве измерительных элементов применяются поликристаллические термолюминесцентные дозиметры (ТЛД) на основе LiF, позволяющие фиксировать суммарную составляющую радиоактивности (α, β, γ) и обладающие высокой чувствительностью. Применяемые для измерений ТЛД помещаются в водонепроницаемую упаковку. Для получения статистически достоверных результатов число дозиметров на точке измерений равно 10. Все дозиметры предварительно калибруются по чувствительности. Термолюминесцентные дозиметры на точках измерения устанавливаются на глубину 0,5-0,7 м. Время экспозиции измерительных элементов в среднем составляет 15-30 сут.

    Гамма-спектрометрическая съемка проводится с применением полевых гамма-спектометров-концентрометров типа РКП-305М, РСП-101М. Измерения осуществляются в точках установки ТЛД с определением содержания К, U (по 226Ra), Th. Для статистической достоверности на каждой точке опробования производится троекратное измерение параметров.

    Пункты исследований привязываются с помощью топографических карт и JPS-приемника. Ведется необходимая геологическая документация.

    Полученные в результате радиогеохимической съемки данные проходят многоцелевую статистическую обработку. Значения интенсивности термолюминесценции градуируются и нормализуются. Строятся карты дозовых вариаций поля радиоактивности и распределения радиоактивных элементов, но, как правило, эти карты носят вспомогательный характер.

    В качестве основных критериев при выделении прогнозных участков нефтегазоносности используются:

    торий-урановое отношение (Th/U);

    показатель интенсивности перераспределения естественных радионуклидов;

    интенсивность термолюминесценции.

    Построение прогнозных схем нефтегазоносности осуществляется по комплексному радиогеохимическому показателю, рассчитываемому по оригинальной методике. По степени перспективности нефтегазоносности выделяются три типа участков: с высокими, средними и низкими перспективами нефтегазоносности.

    Результаты комплексного радиогеохимического картирования показывают, что радиогеохимическое поле в пределах исследованных нефтегазоносных структур имеет довольно ярко выраженные специфические особенности распределения анализируемых радиоэлементов и их интегрированного показателя — интенсивности термолюминесценции. Необходимо отметить, что поля анализируемых параметров каждого объекта при наличии ряда общих закономерностей в характере распределения радиогеохимических показателей имеют и отличительные особенности, что в каждом случае требует индивидуального подхода. Эти различия в значениях радиогеохимических показателей вызваны как размерами и глубиной залегания залежей, а соответственно, и степенью интенсивности эпигенетических преобразований пород надпродуктивного комплекса, так и литолого-ландшафтными особенностями территорий, тектоническим строением, гидродинамическим режимом подземных вод и другими факторами.

    Поля концентраций радиоактивных элементов над нефтегазовыми месторождениями характеризуются высокой степенью дифференциации в распределении К, Th, U и имеют более сложное строение, чем за их границами.

    В пределах исследованных площадей четко фиксируются оси, относительно которых намечается радиогеохимическая зональность. Учитывая довольно выдержанный литолого-фациальный состав подпочвенных геологических образований, можно с большой долей уверенности сказать, что строение радиогеохимического поля на участке локализации УВ-залежей в первую очередь обусловлено особенностями глубинного строения (в том числе тектонического) и проявленностью эпигенетических процессов (прежде всего окислительно-восстановительного характера). Тем не менее анализ только моноэлементных карт не позволяет с высокой степенью достоверности оконтуривать положение УВ-залежей.

    Более четко неоднородности строения радиогеохимического поля, вызванные влиянием УВ-залежей, просматриваются при анализе основных компонентов комплексного радиогеохимического показателя — Th/U, интенсивности перераспределения естественных радионуклидов и интенсивности термолюминесценции.

    Существование зон, характеризующихся аномальными значениями Th/U, по всей видимости, связано с резкими изменениями физико-химических параметров среды, произошедшими в результате эпигенетического воздействия мигрирующих из залежи жидких и газообразных компонентов. Изменение окислительно-восстановительных обстановок в свою очередь послужило причиной перераспределения урана.

    Выявленные зоны высокой интенсивности перераспределения естественных радионуклидов, пространственно совпадающие с полями аномальных значений Th/U, также подтверждают существование геохимических барьеров и, очевидно, фиксируют структуры, вмещающие залежи УВ.

    Наиболее контрастно области проявления наложенных процессов, связанных с воздействием нефтегазовых залежей, отражаются в полях интенсивности термолюминесценции. Необходимо отметить, что линейные размеры выделяемых аномалий в некоторых случаях превосходят горизонтальные проекции залежей. Это связано с концентрацией элементов-индикаторов в горизонте опробования, определяемой интенсивностью окислительно-восстановительных реакций в зоне миграции УВ.

    Учитывая эпигенетическую природу радиогеохимических аномалий, формирующихся над местами локализации УВ-залежей, можно говорить, что по значениям радиоактивной производной будут фиксироваться нефтегазоносные залежи любого типа (в том числе литологически и тектонически экранированные).

    Выполненные исследования показали, что комплексное радиогеохимическое картирование с применением методов полевой термолюминесцентной радиометрии и гамма-спектрометрии позволяет с высокой степенью вероятности выявлять нефтегазоносные структуры.

    Радиогеохимическое поле над нефтегазовыми месторождениями характеризуется высокой степенью неоднородности. Максимальные вариации содержаний анализируемых радиоэлементов и значений комплексных показателей в большинстве случаев фиксируются в пределах ГВК, ГНК, ВНК и областях локализации основных запасов УВ.

    Анализ моноэлементных карт не позволяет четко выделять границы зон влияния УВ-залежей. Для обнаружения участков скоплений УВ с максимальной вероятностью их выявления (> 0,7) целесообразно применять комплексные радиогеохимические показатели, учитывающие поведение всех радиоэлементов.

    При интерпретации результатов необходимо учитывать различные особенности ландшафтов (в частности, условия заболоченности и др.). Наличие локальных вариаций значений содержаний элементов и интенсивности термолюминесценции, совпадающих с профилями исследований, позволяет говорить о том, что в более крупном масштабе радиогеохимическое поле имеет более сложный характер. Локальные дифференциации значений различных показателей, на наш взгляд, вызваны неоднородностями строения залежи УВ и различной проницаемостью экранирующих пород. По-видимому, при проведении крупномасштабных работ 1:25 000 — 1:10000 возможен более локальный прогноз, более точное выделение ГВК, ГНК, ВНК и ориентировочное определение глубины залегания залежей.

    Материалы радиогеохимического картирования показывают, что благоприятные предпосылки для получения положительных результатов существуют и в варианте аэрогаммасъемки.

    Лекция № 6

    Тема: Роль, задачи и принципы интерпретации данных электроразведки.
    Электроразведка (точнее электромагнитная разведка) объединяет физические методы исследования геосфер Земли, поисков и разведки полезных ископаемых, основанные на изучении электрических и электромагнитных полей, существующих в Земле либо в силу естественных космических, атмосферных, физико-химических процессов, либо созданных искусственно.

    Используемые поля могут быть:

    установившимися, т.е. существующими свыше секунды (постоянными и переменными, гармоническими или квазигармоническими с частотой от миллигерц (1 мГц = 10-3 Гц) до петагерц (1 ПГц = 1015 Гц));

    неустановившимися, импульсными с длительностью импульсов от микросекунд до секунд.

    С помощью разнообразной аппаратуры измеряют амплитудные и фазовые составляющие напряженности электрических и магнитных полей. Изменение глубинности электроразведки достигается изменением мощности источников, частоты и длительности возбуждения, а также зависит от способов создания поля.

    Способы создания поля могут быть гальваническими (ток вводится в Землю с помощью заземлений) или индукционными (ток пропускается в незаземленную петлю, рамку).

    Глубинностью можно управлять также геометрическим и частотным приемами. Сущность геометрического приема сводится к увеличению расстояния между источником поля и точками, где оно измеряется, что ведет к росту объема среды, вовлекаемого в исследование. Частотный принцип увеличения глубинности основан на скин-эффекте, т.е. прижимании поля к поверхности Земли, тем большем, чем выше частота гармонического поля или меньше время после создания импульсного поля. Наоборот, чем меньше частота, больше (период колебаний) или время (его называют временем диффузии, становления поля, или переходного процесса), тем больше глубинность разведки.

    Вследствие многообразия используемых полей, их частотно-временных спектров, электромагнитных свойств горных пород электроразведка отличается от других геофизических методов большим количеством методов (свыше 65).

    По физической природе их можно сгруппировать в методы естественного переменного электромагнитного поля, поляризационные (геоэлектрохимические), сопротивлений, индукционные низкочастотные, высокочастотные, сверхвысокочастотные, биогеофизические.
    По геометрии и строению изучаемых геологических разрезов методы электроразведки условно делятся на:

      1. профилирования, предназначенные для изучения крутослоистых разрезов или выявления объектов в горизонтальном направлении;

      2. зондирования, которые служат для расчленения горизонтально (или полого) слоистых разрезов в вертикальном направлении;

      3. подземно-скважинные (объемные), объединяющие методы выявления неоднородностей между скважинами, горными выработками и земной поверхностью.

    Электроразведка с той или иной эффективностью применяется для решения практически всех задач, при которых используются геофизические методы. В частности, с помощью естественных переменных полей солнечно-космического происхождения разведываются земные недра на глубинах до 500 км и ведется изучение таких геосфер, как осадочная толща, кристаллические породы, земная кора, верхняя мантия. Электромагнитные зондирования используются при глубинных и структурных исследованиях, поисках нефти и газа. Электромагнитные профилирования применяются при картировочно-поисковых съемках, поисках рудных и нерудных полезных ископаемых. Объемные методы применяются при разведке месторождений. Малоглубинные электромагнитные зондирования и профилирования используются при инженерных и экологических исследованиях.

    1   ...   4   5   6   7   8   9   10   11   ...   15


    написать администратору сайта