Лекция 1 Введение в компьютерные сети. Эволюция сетей. Классификация компьютерных сетей
Скачать 223.5 Kb.
|
Компьютерные сети. Лекция 1 . Малов Дмитрий Николаевич «Технологии Компьютерных Сетей» Лекция 1
Современное мировоззрение в свете компьютеризации и глобализации современного общества. В настоящее время компьютерная техника прочно укоренилась в нашей жизни, вросла в сознание нового поколения и стала неотъемлемой частью быта современного человека! Где используется «компьютерная сеть»:
Несмотря на свое широкое распространение, сети остаются для многих наиболее таинственной и неизученной областью информационных технологий. Сеть представляет собой механизм, позволяющий отдельным компьютерам и углеродным живым формам (которые часто называют "пользователями") взаимодействовать друг с другом и совместно использовать общие ресурсы. Компьютерная сеть - это сложный комплекс взаимосвязанных и согласованно функционирующих программных и аппаратных компонентов. Эволюция сетей.Вообще всю сетевую эволюцию можно достаточно условно разделить на 6 ступеней:
Первоначально сети представляли собой абсолютно не стандартизованные средства взаимодействия автономных компьютеров в настолько же не стандартизованных вычислительных системах. Компании, перед которыми в предшествовавшие появлению персональных компьютеров времена стояли задачи автоматизации обработки данных и бухгалтерского учета, вынуждены были доверять решение "под ключ" единственному производителю.
Первые компьютеры 50-х годов- большие, громоздкие и дорогие - предназначались для очень небольшого числа избранных пользователей. Такие компьютеры не были предназначены для интерактивной работы пользователя, а использовались в режиме пакетной обработки. Системы пакетной обработки, как правило, строились на базе мэйнфрейма (MainFrame) — мощного и надежного компьютера универсального назначения (рис.1.1). Пользователи подготавливали перфокарты, содержащие данные и команды программ и передавали их в вычислительный центр. Операторы вводили эти карты в компьютер, а распечатанные результаты пользователи получали обычно только на следующий день. Т Рис.1. 1 Централизованная система на базе мейнфрейма аким образом, одна неверно набитая карта означала, как минимум, суточную задержку. Естественно, что пользовательский интерактивный режим, при котором можно с терминала оперативно руководить процессом обработки своих данных, был бы гораздо удобней. Но интересами пользователей на первых этапах развития вычислительных систем в значительной степени пренебрегали, поскольку пакетный режим - это самый эффективный режим использования вычислительной мощности, так как он позволяет выполнить в единицу времени больше пользовательских задач, чем любые другие режимы. В этот период времени во главу угла ставится эффективность работы самого дорогого устройства вычислительной машины - процессора, в ущерб эффективности работы использующих его специалистов. 2. Начало 60-ых годов (многотерминальные системы – прообраз сети)По мере удешевления процессоров в начале 60-х годов появились новые способы организации вычислительного процесса, которые позволили учесть интересы пользователей. Начали развиваться интерактивные многотерминальные системы разделения времени (рис.1.2). Рис.1. 2. Многотерминальная система - прообраз вычислительной сети В таких системах компьютер отдавался в распоряжение сразу нескольким пользователям. Каждый пользователь получал в свое распоряжение терминал, с помощью которого он мог вести диалог с компьютером. Причем время реакции вычислительной системы было достаточно мало для того, чтобы пользователю была не слишком заметна параллельная работа с компьютером и других пользователей. Разделяя, таким образом, компьютер, пользователи получили возможность за сравнительно небольшую плату пользоваться преимуществами компьютеризации. Терминалы, выйдя за пределы вычислительного центра, рассредоточилась по всему предприятию. И, хотя, вычислительная мощность оставались полностью централизованной, некоторые функции — такие как, ввод и вывод данных — стали распределенными. Такие многотерминальные централизованные системы внешне уже были очень похожи на локальные вычислительные сети. Действительно, рядовой пользователь работу за терминалом мэйнфрейма воспринимал примерно так же, как сейчас он воспринимает работу за подключенным к сети персональным компьютером. Пользователь мог получить доступ к общим файлам и периферийным устройствам, при этом у него поддерживалась полная иллюзия единоличного владения компьютером, так как он мог запустить нужную ему программу в любой момент и почти сразу же получить результат. (Некоторые, далекие от вычислительной техники пользователи даже были уверены, что все вычисления выполняются внутри их дисплея.) Таким образом, многотерминальные системы, работающие в режиме разделения времени, стали первым шагом на пути создания локальных вычислительных сетей. Необходимо отметить, что потребность предприятий в создании локальных сетей в это время еще не созрела — в одном здании просто нечего было объединять в сеть, так как из-за высокой стоимости вычислительной техники предприятия не могли себе позволить роскошь приобретения нескольких компьютеров. В этот период был справедлив так называемый «закон Гроша», который эмпирически отражал уровень технологии того времени. В соответствии с этим законом производительность компьютера была пропорциональна квадрату его стоимости, отсюда следовало, что за одну и ту же сумму было выгоднее купить одну мощную машину, чем две менее мощных - их суммарная мощность оказывалась намного ниже мощности дорогой машины.
Тем не менее, потребность в соединении компьютеров, находящихся на большом расстоянии друг от друга, к этому времени вполне назрела. Началось все с решения более простой задачи - доступа к компьютеру с терминалов, удаленных от него на многие сотни, а то и тысячи километров. Терминалы соединялись с компьютерами через телефонные сети с помощью модемов. Такие сети позволяли многочисленным пользователям получать удаленный доступ к разделяемым ресурсам нескольких мощных компьютеров класса суперЭВМ. Затем появились системы, в которых наряду с удаленными соединениями типа терминал-компьютер были реализованы и удаленные связи типа компьютер-компьютер. Компьютеры получили возможность обмениваться данными в автоматическом режиме, что, собственно, и является базовым механизмом любой вычислительной сети. Используя, этот механизм, в первых сетях были реализованы службы обмена файлами, синхронизации баз данных, электронной почты и другие, ставшие теперь традиционными сетевые службы. Таким образом, хронологически первыми появились глобальные вычислительные сети. Именно при построении глобальных сетей были впервые предложены и отработаны многие основные идеи и концепции современных вычислительных сетей. Такие, например, как многоуровневое построение коммуникационных протоколов, технология коммутации пакетов, маршрутизация пакетов в составных сетях. 4. Первые локальные сетиВ начале 70-х годов произошел технологический прорыв в области производства компьютерных компонентов - появились большие интегральные схемы. Их сравнительно невысокая стоимость и высокие функциональные возможности привели к созданию мини-компьютеров, которые стали реальными конкурентами мэйнфреймов. Закон Гроша перестал соответствовать действительности, так как десяток мини-компьютеров выполнял некоторые задачи (как правило, хорошо распараллеливаемые) быстрее одного мэйнфрейма, а стоимость такой миникомпьютерной системы была меньше. Даже небольшие подразделения предприятий получили возможность покупать для себя компьютеры. Мини-компьютеры выполняли задачи управления технологическим оборудованием, складом и другие задачи уровня подразделения предприятия. Таким образом, появилась концепция распределения компьютерных ресурсов по всему предприятию.Однако при этом все компьютеры одной организации по-прежнему продолжали работать автономно (рис.1.3). Рис.1. 3 Автономное использование нескольких мини-комьютеров на одном предприятии Но шло время, потребности пользователей вычислительной техники росли, им стало недостаточно собственных компьютеров, им уже хотелось получить возможность обмена данными с другими близко расположенными компьютерами. В ответ на эту потребность предприятия и организации стали соединять свои мини-компьютеры вместе и разрабатывать программное обеспечение, необходимое для их взаимодействия. В результате появились первые локальные вычислительные сета (рис. 1.4). Рис.1. 4 Разные типы связей в первых локальных сетях На первых порах, для соединения компьютеров друг с другом использовались самые разнообразные нестандартные устройства со своим способом представления данных на линиях связи, типами кабелей и т. п. Эти устройства могли соединять только те компьютеры, для которых были разработаны. Например, мини-компьютеры PDP-11 с мэйнфреймом IBM 360 или компьютеры «Наири» с компьютерами «Днепр». 5. Создание стандартных технологий локальных сетейВ середине 80-х годов положение дел в локальных сетях стало кардинально меняться. Утвердились стандартные технологии объединения компьютеров в сеть — Ethernet, Arcnet, Token Ring. Мощным стимулом для их развития послужили персональные компьютеры. Эти массовые продукты явились идеальными элементами для построения сетей — с одной стороны, они были достаточно мощными для работы сетевого программного обеспечения, а с другой — явно нуждались в объединении своей вычислительной мощности для решения сложных задач, а также разделения дорогих периферийных устройств и дисковых массивов. Поэтому персональные компьютеры стали преобладать в локальных сетях, причем не только в качестве клиентских компьютеров, но и в качестве центров хранения и обработки данных, то есть сетевых серверов, потеснив с этих привычных ролей мини-компьютеры и мэйнфреймы. Стандартные сетевые технологии превратили процесс построения локальной сети из искусства в рутинную работу. Теперь для создания сети достаточно было приобрести сетевые адаптеры соответствующего стандарта, например Ethernet, стандартный кабель, присоединить адаптеры к кабелю стандартными разъемами и установить на компьютер одну из популярных сетевых операционных систем, например, NetWare. После этого, сеть начинала работать и присоединение каждого нового компьютера не вызывало никаких проблем — естественно, если на нем был установлен сетевой адаптер той же технологии. Локальные сети в сравнении с глобальными сетями внесли много нового в способы организации работы пользователей. Доступ к разделяемым ресурсам стал гораздо удобнее - пользователь мог просто просматривать списки имеющихся ресурсов, а не запоминать их идентификаторы или имена. После соединения с удаленным ресурсом можно было работать с ним с помощью уже знакомых пользователю по работе с локальными ресурсами команд. Последствием и одновременно движущей силой такого прогресса стало появление огромного числа непрофессиональных пользователей (или чайников), которым совершенно не нужно было изучать специальные (и достаточно сложные) команды для сетевой работы. А возможность реализовать все эти удобства разработчики локальных сетей получили в результате появления качественных кабельных линий связи, на которых даже сетевые адаптеры первого поколения обеспечивали скорость передачи данных до 10 Мбит/с. Конечно, о таких скоростях разработчики глобальных сетей не могли даже мечтать - им приходилось пользоваться теми каналами связи, которые были в наличии, так как прокладка новых кабельных систем для вычислительных сетей протяженностью в тысячи километров потребовала бы колоссальных капитальных вложений. А «под рукой» были только телефонные каналы связи, плохо приспособленные для высокоскоростной передачи дискретных данных — скорость в 1200 бит/с была для них хорошим достижением. Поэтому экономное расходование пропускной способности каналов связи часто являлось основным критерием эффективности методов передачи данных в глобальных сетях. В этих условиях различные процедуры прозрачного доступа к удаленным ресурсам, стандартные для локальных сетей, для глобальных сетей долго оставались непозволительной роскошью.
Сегодня вычислительные сети продолжают развиваться, причем достаточно быстро. Разрыв между локальными и глобальными сетями постоянно сокращается во многом из-за появления высокоскоростных территориальных каналов связи, не уступающих по качеству кабельным системам локальных сетей. В глобальных сетях появляются службы доступа к ресурсам, такие же удобные и прозрачные, как и службы локальных сетей. Подобные примеры в большом количестве демонстрирует самая популярная глобальная сеть — Internet. Изменяются и локальные сети. Вместо соединяющего компьютеры пассивного кабеля в них в большом количестве появилось разнообразное коммуникационное оборудование — коммутаторы, маршрутизаторы, шлюзы. Благодаря такому оборудованию появилась возможность построения больших корпоративных сетей, насчитывающих тысячи компьютеров и имеющих сложную структуру. Возродился интерес к крупным компьютерам — в основном из-за того, что после спада эйфории по поводу легкости работы с персональными компьютерами выяснилось, что системы, состоящие из сотен серверов, обслуживать сложнее, чем несколько больших компьютеров. Поэтому на новом витке эволюционной спирали мэйнфреймы стали возвращаться в корпоративные вычислительные системы, но уже как полноправные сетевые узлы, поддерживающие Ethernet или Token Ring, а также стек протоколов TCP/IP, ставший благодаря Internet сетевым стандартом де-факто. Проявилась еще одна очень важная тенденция, затрагивающая в равной степени как локальные, так и глобальные сети. В них стала обрабатываться несвойственная ранее вычислительным сетям информация — голос, видеоизображения, рисунки. Это потребовало внесения изменений в работу протоколов, сетевых операционных систем и коммуникационного оборудования. Сложность передачи такой мультимедийной информации по сети связана с ее чувствительностью к задержкам при передаче пакетов данных - задержки обычно приводят к искажению такой информации в конечных узлах сети. Так как традиционные службы вычислительных сетей - такие как передача файлов или электронная почта - создают малочувствительный к задержкам трафик и все элементы сетей разрабатывались в расчете на него, то появление трафика реального времени привело к большим проблемам. Сегодня эти проблемы решаются различными способами, в том числе и с помощью, специально рассчитанной на передачу различных типов трафика, технологии АТМ. Однако, несмотря на значительные усилия, предпринимаемые в этом направлении, до приемлемого решения проблемы пока далеко. В этой области предстоит еще много сделать, чтобы достичь заветной цели - слияния технологий не только локальных и глобальных сетей, но и технологий любых информационных сетей (вычислительных, телефонных, телевизионных и т. п.). Хотя, сегодня эта идея многим кажется утопией, серьезные специалисты считают, что предпосылки для такого синтеза уже существуют, и их мнения расходятся только в оценке примерных сроков такого объединения - называются сроки от 10 до 25 лет. Причем считается, что основой для объединения послужит технология коммутации пакетов, применяемая сегодня в вычислительных сетях, а не технология коммутации каналов, используемая в телефонии, что, без сомнения, повысит интерес к сетям этого типа. Основные программные и аппаратные компоненты сети.Компьютерные сети относятся к распределенным (или децентрализованным) вычислительным системам. Основным признаком, которых является наличие нескольких центров обработки данных.
Основная цель создания вычислительной сети – разделение локальных ресурсов каждого компьютера между всеми пользователями сети. Теперь появляется возможность использовать не только файлы, диски, принтеры и другие ресурсы своего компьютера, но и аналогичные ресурсы других компьютеров, подключенных к той же сети. Одними из важнейших понятий в ЛВС являются слова «сервер» и «клиент».
Часто один и тот же компьютер играет роль и клиента и сервера. Практически на основе этих двух понятий строится ЛВС. Пара модулей «клиент - сервер» обеспечивает совместный доступ пользователей к определенному типу ресурсов, например к файлам. В этом случае говорят, что пользователь имеет дело с файловой службой (service). Обычно сетевая операционная система поддерживает несколько видов сетевых служб для своих пользователей:
Рис.1. 5 Взаимодействие частей распределенного приложения Для осуществления взаимодействия между парой «клиент-сервер», представленный на рис.1.5., необходим комплекс программно-аппаратных средств, который может быть описан следующей многослойной моделью: 1.Компьютеры.
2.Коммуникационное оборудование.
В настоящий момент занимают центральное положение наряду с компьютерами и системным программным обеспечением:
Сегодня коммуникационное устройство – сложный специализированный мультипроцессор, который нужно конфигурировать, оптимизировать и администрировать. Изучение принципов работы коммуникационного оборудования требует знакомства с большим количеством протоколов, используемых как в локальных, так и глобальных сетях. 3. Операционные системы (ОС). Эффективность работы всей сети зависит от того, какие концепции управления локальными и распределенными ресурсами положены в основу сетевой ОС. При проектировании сети важно учитывать следующие моменты:
4. Сетевые приложения.
Очень важно представлять диапазон возможностей, предоставляемых приложениями для различных областей применения, а также знать, насколько они совместимы с другими сетевыми приложениями и операционными системами. Классификация компьютерных сетейДля классификации компьютерных сетей используются различные признаки, но чаще всего сети делят на типы по территориальному признаку, то есть по величине территории, которую покрывает сеть. И для этого есть веские причины, так как отличия технологий локальных и глобальных сетей очень значительны, несмотря на их постоянное сближение. 1.Локальные сети – Local Area Networks (LAN).
2. Глобальные сети - Wide Area Networks (WAN).
3. Городские сети (или сети мегаполисов) - Metropolitan Area Networks (MAN) В нашей стране являются менее распространенным типом сетей. Эти сети появились сравнительно недавно.
Развитие технологии сетей мегаполисов осуществлялось местными телефонными компаниями. Исторически сложилось так, что местные телефонные компании всегда обладали слабыми техническими возможностями и из-за этого не могли привлечь крупных клиентов. Чтобы преодолеть свою отсталость и занять достойное место в мире локальных и глобальных сетей, местные предприятия связи занялись разработкой сетей на основе самых современных технологий, например, технологии коммутации ячеек SMDS или АТМ. 4. Промышленные сети - FieldbusСовременные технологии автоматизации, используемые в промышленных структурах, предполагают наличие сложных разнородных сетей передачи данных, сетей сбора технологической информации, а также телефонных систем. Крупные коммерческие и/или банковские структуры, как правило, также применяют сети сбора данных с различного "технологического" оборудования (источники бесперебойного питания для компьютерных систем, системы охраны, контроля доступа и видео наблюдения, системы энерго и тепло обеспечения зданий и пр.). Общими особенностями структурной реализации таких сетей является:
Промышленная сеть Fieldbus (полевая шина, или промышленная сеть) - коммуникационная технология построения единой информационной сети, объединяющей интеллектуальные контроллеры, датчики и исполнительные механизмы, определяется одним термином. Fieldbus - это, во-первых, некая физическая коммуникационная технология объединения устройств (например, RS485) и, во-вторых, программно-логический протокол взаимодействия этих устройств. Fieldbus - это сеть для промышленного применения, логически очень похожая на LAN-сети, применяемые в офисных приложениях. Однако промышленные сети призваны выполнять специфический набор функций:
Примеры промышленных технологий это – протокол BITBUS, технологии CAN, INTERBUS, LON, PROFIBUS и т.д. Нужна сеть или нет, вот в чем вопрос …Теперь обобщим все вышесказанное с точки зрения предприятия и его прямой выгоды от развертывания компьютерной сети. Достоинства, которыми обладает наша компьютерная сеть по отношению к использованию автономных компьютеров или многомерных машин:
Конечно, вычислительные сети имеют и свои проблемы. Эти проблемы в основном связаны с организацией эффективного взаимодействия отдельных частей распределенной системы. Во-первых, это сложности, связанные с программным обеспечением — операционными системами и приложениями (программирование операционных систем и приложений). Программирование для распределённых систем принципиально отличается от программирования для централизованных систем. Так, сетевая операционная система, выполняя в общем случае все функции по управлению локальными ресурсами компьютера, сверх того решает многочисленные задачи по предоставлению сетевых служб. Разработка сетевых приложений осложняется из-за необходимости организовать совместную работу их частей, выполняющихся на разных машинах. Много забот доставляет обеспечение совместимости программного обеспечения. Во-вторых, много проблем связано с транспортировкой сообщений по каналам связи между компьютерами. Основные задачи здесь — обеспечение надежности (чтобы передаваемые данные не терялись и не искажались) и производительности (чтобы обмен данными происходил с приемлемыми задержками). В структуре общих затрат на вычислительную сеть расходы на решение «транспортных вопросов» составляют существенную часть, в то время как в централизованных системах эти проблемы полностью отсутствуют. В-третьих, это вопросы, связанные с обеспечением безопасности, которые гораздо сложнее решаются в вычислительной сети, чем в централизованной системе. В некоторых случаях, когда безопасность особенно важна, от использования сети лучше вообще отказаться. -- |