Главная страница

3. Презентации ТССА-!!!-пв. Литература Дрейзис Ю. И. Основы теории систем и системный анализ. Издво Артрум, Краснодар


Скачать 2.29 Mb.
НазваниеЛитература Дрейзис Ю. И. Основы теории систем и системный анализ. Издво Артрум, Краснодар
Дата15.04.2022
Размер2.29 Mb.
Формат файлаppt
Имя файла3. Презентации ТССА-!!!-пв.ppt
ТипЛитература
#476750
страница2 из 16
1   2   3   4   5   6   7   8   9   ...   16

Тема-2. Основные понятия теории систем


Система
Элемент системы
Характеристика элемента
Подсистема
Связь
Структура системы
Декомпозиция системы
Состояние системы
Поведение системы
Внешняя среда
Модель системы
Цель
Равновесие
Устойчивость
Развитие


Система - объект или процесс, в котором элементы-участники связаны некоторыми связями и отношениями.
Подсистема - часть системы с некоторыми связями и отношениями.
Состояние системы - фиксация совокупности доступных системе ресурсов (материальных, энергетических, информационных, пространственных, временных, людских, организационных), определяющих ее отношение к ожидаемому результату или его образу
Цель - образ несуществующего, но желаемого, с точки зрения задачи или рассматриваемой проблемы, состояния среды, т.е. такого состояния, которое позволяет решать проблему при данных ресурсах.
Задача - некоторое множество исходных посылок (входных данных к задаче ), описание цели, определенной над множеством этих данных, и, может быть, описание возможных стратегий достижения этой цели или возможных промежуточных состояний исследуемого объекта
Описание системы - это идентификация ее определяющих элементов и подсистем, их взаимосвязей, целей, функций и ресурсов, т.е. описание допустимых состояний системы.
Структура - все то, что вносит порядок во множество объектов, т.е. совокуп-ность связей и отношений между частями целого, необходимых для достижения цели.


Основные определения системного анализа
Элемент - некоторый объект (материальный, энергетический, информационный), который обладает рядом важных для нас свойств, но внутреннее строение (содержание) которого безотносительно к цели рассмотрения.
Под элементом принято понимать простейшую неделимую часть системы.
Ответ на вопрос, что является такой частью, может быть неоднозначным и зависит от цели рассмотрения объекта как системы, от точки зрения на него или от аспекта его изучения.
Таким образом, элемент - это предел деления системы с точек зрения решения конкретной задачи и поставленной цели. Систему можно расчленить на элементы различными способами в зависимости от формулировки цели и ее уточнения в процессе исследования.
Характеристика – то, что отражает некоторое свойство элемента системы. Характеристика элемента системы обычно задается именем и областью допустимых значений..
Характеристики делятся на количественные и качественные в зависимости от типа отношений.
Если область допустимых значений задается метризованными значениями, то характеристика является количественной (например, размер экрана).
Если пространство значений не метрическое, то характеристика является качественной (например, такая характеристика монитора, как комфортное разрешение, которое хоть и измеряется в пикселях, но зависит от особенностей пользователя). Количественная характеристика называется параметром.


Подсистема
Система может быть разделена на элементы не сразу, а последовательным расчленением на подсистемы, которые представляют собой компоненты более крупные, чем элементы, и в то же время более детальные, чем система в целом. Возможность деления системы на подсистемы связана с вычленением совокупностей взаимосвязанных элементов, способных выполнять относительно независимые функции, подцели, направленные на достижение общей цели системы.
Названием «подсистема» подчеркивается, что такая часть должна обладать свойствами системы (в частности, свойством целостности). Этим подсистема отличается от простой группы элементов, для которой не сформулирована подцель и не выполняются свойства целостности (для такой группы используется название «компоненты»). Например, подсистемы АСУ, подсистемы пассажирского транспорта крупного города (автобусы, трамваи, тролейбусы, такси).


Подсистемы: щелочные металлы, галогены, газы, кремниевая группа и т.д.


Связь - важный для целей рассмотрения обмен между элементами, веществом, энергией, информацией.
Понятие «связь» входит в любое определение системы наряду с понятием «элемент» и обеспечивает возникновение и сохранение структуры и целостных свойств системы. Это понятие характеризует одновременно и строение (статику), и функционирование (динамику) системы.
Связь характеризуется 1) направлением, 2) силой и 3) характером (или видом).
По первым двум признакам связи можно разделить на направленные и ненаправленные,, сильные и слабые, а по характеру - на связи подчинения, генетические, равноправные (или безразличные), связи управления.
Связи можно разделить также по месту приложения (внутренние и внешние), по направленности процессов в системе в целом или в отдельных ее подсистемах (прямые и обратные). Связи в конкретных системах могут быть одновременно охарактеризованы несколькими из названных признаков.
Важную роль в системах играет понятие «обратной связи».
Это понятие, легко иллюстрируемое на примерах технических устройств, не всегда можно применить в организационных системах. Исследованию этого понятия большое внимание уделяется в кибернетике, в которой изучается возможность перенесения механизмов обратной связи, характерных для объектов одной физической природы, на объекты другой природы.
Обратная связь является основой саморегулирования и развития систем, приспособления их к изменяющимся условиям существования.


Система – это совокупность элементов, которая обладает следующими признаками:
Связями, которые позволяют посредством переходов по ним от элемента к элементу соединить два любых элемента совокупности;
Свойством, отличным от свойств отдельных элементов совокупности.
Практически любой объект с определенной точки зрения может быть рассмотрен как система. Вопрос состоит в том, насколько целесообразна такая точка зрения.
Большая система - система, которая включает значительное число однотипных элементов и однотипных связей. В качестве примера можно привести трубопровод. Элементами последнего будут участки между швами или опорами. Для расчетов на прочность элементами системы считаются небольшие участки трубы, а связь имеет силовой (энергетический) характер - каждый элемент действует на соседние элементы.
Сложная система - система, которая состоит из элементов разных типов и обладает разнородными связями между ними. Пример: ЭВМ, лесной трактор, судно.
Автоматизированная система - сложная система с определяющей ролью элемен-тов двух типов: * в виде технических средств; * в виде действия человека.
Для сложной системы автоматизированный режим считается более предпоч-тительным, чем автоматический. Например, посадка самолета или захват дерева харвестерной головкой выполняется при участии человека, а автопилот или бортовой компьютер используется лишь на относительно простых операциях.
Типична также ситуация, когда решение, выработанное техническими средствами, утверждается к исполнению человеком.


Структура системы
Это понятие происходит от латинского слова structure, означающего строение, расположение, порядок.
Структура отражает наиболее существенные взаимоотношения между элементами и их группами (компонентами, подсистемами), которые мало меняются при изменениях в системе и обеспечивают существование системы и ее основных свойств.
Структура - это совокупность элементов, расчленение системы на группы элементов с указанием связей между ними, неизменное на все время рассмотрения и дающее представление о системе в целом.
Указанное расчленение может иметь материальную, функциональную, алгорит-мическую или другую основу. Структура может быть представлена графически, в виде теоретико-множественных описаний, матриц, графов, сетей, иерархий: древовидных и многоуровневых («страт», «слоев» и «эшелонов») и других языков моделирования структур.
Структуру часто представляют в виде иерархии (упорядоченность компонентов по степени важности).
Иерархия - это упорядоченность компонентов по степени важности (многоступенчатость, служебная лестница).
Иерархия - структура с наличием подчиненности, т.е. неравноправных связей между элементами, когда воздействие в одном из направлений оказывают гораздо большее влияние на элемент, чем в другом.
Виды иерархических структур разнообразны, но важных для практики иерархических структур всего две - древовидная и многоуровневая.


Примеры структур


Структура линейного типа


Структура иерархического типа
(первая цифра - номер уровня)


Структуры макромолекул из кремния и кислорода (а, б, в)


Примеры структур:
Иерархическая структура системы управления в организации
Пример материальной структуры
- структурная схема сборного моста, которая состоит из отдельных, собираемых на месте секций и указывает только эти секции и порядок их соединения.
Пример функциональной структуры
- деление двигателя внутреннего сгорания на системы питания, смазки, охлаждения, передачи крутящего момента.
Пример алгоритмической структуры – алгоритм программного средства, указывающего последовательность действий или инструкция, которая определяет действия при отыскании неисправности технического устройства.


Декомпозиция - деление системы на части, удобное для каких-либо операций с этой системой. Примерами будут: разделение объекта на отдельно проектируемые части, зоны обслуживания; рассмотрение физического явления или математическое описание отдельно для данной части системы.
Состояние. Понятием «состояние» обычно характеризуют мгновенную фото-графию, «срез» системы, остановку в ее развитии. Его определяют либо через входные воздействия и выходные сигналы (результаты), либо через макропараметры, макро-свойства системы (например, давление, скорость, ускорение - для физических систем; производительность, себестоимость продукции, прибыль - для экономических систем).
Более полно состояние можно определить, если рассмотреть элементы (или компоненты, функциональные блоки), определяющие состояние, учесть, что «входы» можно разделить на управляющие u и возмущающие х (неконтролируемые) и что «выходы» (выходные результаты, сигналы) зависят от , u и х, т.е. zt=f(t, ut, xt). Тогда в зависимости от задачи состояние может быть определено как {, u}, {, u, z} или {, х, u, z}.
Таким образом, состояние - это множество существенных свойств, которыми система обладает в данный момент времени.
Поведение. Если система способна переходить из одного состояния в другое (например, z1z2z3), то говорят, что она обладает поведением. Этим понятием пользуются, когда неизвестны закономерности переходов из одного состояния в другое. Тогда говорят, что система обладает каким-то поведением, и выясняют его законо-мерности. С учетом введенных выше обозначений поведение можно представить как функцию zt=f(zt-1, xt, ut).


Внешняя среда. Под внешней средой понимается множество элементов, которые не входят в систему, но изменение их состояния вызывает изменение поведения системы.
Модель. Под моделью системы понимается описание системы, отображающее определенную группу ее свойств. Углубление описания - детализация модели. Создание модели системы позволяет предсказывать ее поведение в определенном диапазоне условий.
Модель функционирования (поведения) системы - это модель, предсказывающая изменение состояния системы во времени, например: натурные (аналоговые), элект-рические, машинные на ЭВМ и др.
Равновесие. Это способность системы в отсутствие внешних возмущающих воздействий (или при постоянных воздействиях) сохранить свое состояние сколь угодно долго.
Устойчивость. Под устойчивостью понимается способность системы возвра-щаться в состояние равновесия после того, как она была из этого состояния выведена под влиянием внешних возмущающих воздействий.
Состояние равновесия, в которое система способна возвращаться, по аналогии с техническими устройствами называют устойчивым состоянием равновесия.
Развитие. Исследованию процесса развития, соотношения процессов развития и устойчивости, изучению механизмов, лежащих в их основе, уделяют в кибернетике и теории систем большое внимание. Понятие развития помогает объяснить сложные динамические и информационные процессы в природе и обществе.


Цель. Применение понятия «цель» и связанных с ним понятий целенаправлен-ности, целеустремленности, целесообразности сдерживается трудностью их однознач-ного толкования в конкретных условиях.
Это связано с тем, что процесс целеобразования и соответствующий ему процесс обоснования целей в организационных системах весьма сложен и не до конца изучен. Его исследованию большое внимание уделяется в психологии, философии, кибернетике. В Энциклопедии цель определяется как «заранее мыслимый результат сознательной деятельности человека». В практических применениях цель - это или идеальное устремление, которое позволяет коллективу увидеть перспективы или реальные возможности.
Конкретные цели. Это конечные результаты, достижимые в пределах опреде-ленного интервала времени, обеспечивающие своевременность завершения очередного этапа на пути к идеальным устремлениям.
В настоящее время в связи с усилением программно-целевых принципов в планировании исследованию закономерностей целеобразования и представления целей в конкретных условиях уделяется все больше внимания.
Например: энергетическая программа, продовольственная программа, жилищная программа, программа перехода к рыночной экономике.
Понятие цель лежит в основе развития системы.
Управление
В широком смысле слова под управлением понимается организационную деятель-ность, осуществляющую функции и направленную на достижении определенных целей.

1   2   3   4   5   6   7   8   9   ...   16


написать администратору сайта