Девятко И. Методы социологического исследования. Логика социологического исследования методология и логика социологического исследования. Возможно ли объективное и научное социальное знание
Скачать 1.69 Mb.
|
Определение шага отбора (К): 80000 человек в «русской» страте : 800 русских в выборке = 100; 10000 человек в «украинской» страте : 100 украинцев в выборке = 100; 10000 человек в страте «другие национальности»: 100 представителей других национальностей в выборке = 100. Таким образом, мы будем выписывать из реальных картотек (списков) каждого сотого русского, каждого сотого украинца и т. п. (естественно, укра- инцы и представители других национальностей будут встречаться в списках в среднем в 10 раз реже русских) 11. Выборка в описанном нами примере является пропорциональной, так как она представляет все страты в той пропорции, в которой они содержатся в генеральной совокупности. Пропорциональный стратифицированный отбор особенно важен для целей дескриптивной, описательной статистики, т. е. когда перед исследователем стоит задача, основываясь на выборке, описать, как распределены те или иные параметры в разных группах генеральной совокупности. Именно так обычно можно сформулировать цель предвыборного опроса, маркетингового исследования покупательских предпочтений и т. п. Еще одним преимуществом стратифицированного вероятностного отбора является уменьшение такого источника общей ошибки измерения, как дисперсия выборки. Не вдаваясь здесь в статистические тонкости, заметим, что стратификация уменьшает так называемую стандартную ошибку (определение и формулу для стандартной ошибки см. в главе 8) лишь в том случае, если интересующая исследователя переменная значительно варьирует между стратами, т. е. когда заранее выделенные страты (например, возрастные группы) сильно отличаются по уровню измеряемой переменной (например, по частоте посещения дискотек). При этом различия внутри страт должны быть относительно невелики, т. е. межгрупповой разброс значений переменной должен значительно превосходить внутригрупповой. Иногда, однако, основной задачей исследования является сравнение различных, обычно важных с точки зрения некоторой теории, групп внутри выборки с целью описания некоторого соотношения, имеющего место в генеральной совокупности. Некоторые из таких «теоретически релевантных» групп могут быть весьма малочисленными. Для того чтобы сделать такие малочисленные группы-субпопуляции статистически сопоставимыми с другими группами и, следовательно, получить статистически значимые выводы о существующих (несуществующих) межгрупповых различиях, можно использовать два метода. Первый метод заключается в увеличении объема выборки. В этом случае пропорционально возрастает объем «редкой» страты, но столь же быстро (а иногда и быстрее) растут расходы на проведение исследования. Если, например, пожилые люди старше 85 лет составляют лишь 1/20 часть целевой совокупности горожан-пенсионеров, то в исследовании эффективности социальной работы с пожилыми людьми нам понадобится выборка объемом 4000 пенсионеров, чтобы получить 200 наблюдений, относящихся к редкой подсовокупности тех, кто старше 85. Другой, более дешевый, метод заключается в непропорциональной стратификации, т. е. в непропорциональном отборе из различных подсовокупностей. Нередко возникает необходимость сделать «распространенные» и «редкие» стра-тыравно представленными в выборке. Если вернуться к обсуждавшемуся выше 11 В действительности нам понадобится как минимум 20%-й запас карточек с именами и адресами для замещения тех респондентов, которые окажутся недоступными даже после 2—3 посещений. Доля «недоступных» в исследовании специфических популяций (например, зубных врачей или читателей «Вопросов литературы») может составить 40—50%, включая и длительно отсутствующих, и отказавшихся от сотрудничества и т. п. Соответственно в последнем случае «запас» должен составлять 40—50% от первоначально запланированного объема выборки. примеру исследования городского населения, можно, в частности, представить ситуацию, когда необходимо сравнить кулинарные предпочтения русских и украинцев. Очевидно, не вполне корректно сравнивать 800 русских и 100 украинцев. В этом случае можно прибегнуть к непропорциональному систематическому отбору из названных страт: если отбирать каждого 200-го русского и каждого 25-го украинца, мы получим две вполне сопоставимые, равные по объему, — 400 и 400 человек — подвыборки (однако эти равные подвыборки будут непропорционально репрезентировать доли соответствующих подсовокупностей, в чем можно убедиться, самостоятельно произведя подсчеты по описанным выше формулам). Выбор между пропорциональной и непропорциональной стратификацией исследователь осуществляет, исходя из содержательных и экономических соображений. Нужно, однако, иметь в виду некоторые «послевыборочные» последствия непропорционального отбора, с которыми социологи сталкиваются на стадии анализа 12. В частности, для получения более точных оценок распределения исследуемых переменных иногда приходится применять так называемое взвешивание (иногда употребляют термин «перевзвешивание»). Взвешивание используют также для того, чтобы исключить влияние некоторых типов систематического смещения в основе выборки и других типов систематической ошибки измерения (см. гл. 6). Например, взвешивание полезно для исключения смещений, возникающих из-за дублирования в списке-основе или, наоборот, из-за наличия систематических «пропусков» для какой-то одной группы (скажем, если в списке пропущено много пожилых людей, постоянно проживающих с детьми, но прописанных по другому адресу). Так как необходимость взвешивания чаще всего вызвана нарушением исходных соотношений, пропорций между входящими в целевую совокупность группами, мы опишем общую идею этой процедуры на примере непропорционального стратифицированного отбора. Напомним, что к непропорциональной стратифицированной выборке прибегают в тех случаях, когда точность оценок для выборки в целом или для отдельных подгрупп (субпопуляций) внутри выборки оказывается недостаточной. В этом случае доли генеральной совокупности (f) будут различны для разных страт. Последнее утверждение равносильно признанию разной вероятности попадания в выборку для единиц, принадлежащих к разным стратам. Как совместить неравные вероятности отбора с данным нами выше определением вероятностной (случайной) выборки, в котором подчеркивалось равенство шансов попадания в выборку для всех входящих в генеральную совокупность еди-ниц-«случаев»? Некоторые статистики считают предложенное нами выше определение не вполне точным и предпочитают говорить о вероятностной выборке как о выборке, где каждая единица отбора имеет «известную, ненулевую вероятность быть включенной в выборку»13, хотя шансы для различных единиц не обязательно равны. Существующее многообразие определений вероятностной выборки восходит к давней дискуссии о правомерности выводов, основанных на априорных («до») и апостериорных («после испытания») вероят- 12 Обсуждение «послевыборочных» последствий различных процедур отбора можно найти, в частности, в книге: HenryG. Т. Practical sampling (Appl. Research Methods Series. Vol. 21). Newbury Park etc.: Sage, 1990. Ch. 8. 13 Henry G. Т. Op. cit. P. 25. ностях. Мы, однако, сохраним наше определение случайной выборки, внеся в него некоторое уточнение: когда шансы попадания в выборку неравны, как при непропорциональном отборе из страт, они могут быть выровнены при помощи взвешивания на стадии анализа, т. е. на собственно послевыборочной стадии исследования (конечно, если отбор внутри страт сохраняет свой случайный и равновероятный характер). Для этого нужно внести определенные поправки в полученные данные, а именно—приписать некоторым наблюдениям (классам наблюдений) больший «вес», компенсирующий меньшие шансы попадания в выборку (и наоборот). Результатом приписывания веса каждому наблюдению является увеличение точности оценок для исследуемых параметров. Вес каждой единицы (респондента) в k-й страте равен отношению числа таких элементов в генеральной совокупности к объему выборки для k-й страты 14, т. е.: При расчете среднего или других параметров (см. гл. 8) каждое наблюдавшееся значение просто умножается на весовой коэффициент «своей» страты. В частности, среднее значение какого-то параметра совокупности (например, средний доход или среднее количество хронических заболеваний) будет равняться просто взвешенной сумме средних значений для отдельных страт: Формула расчета стандартной ошибки (см. гл. 8) для стратифицированной выборки также включает в себя весовые коэффициенты, w: Стандартные компьютерные программы, используемые при статистическом анализе данных, всегда содержат элементарные процедуры взвешивания. Вернемся к нашему примеру с непропорциональным стратифицированным отбором русского и украинского населения. Предположим, мы выяснили, что в среднем каждая украинская семья заготавливает на зиму 50 кг варенья, тогда как среднее значение для русской страты составило 40 кг. Для украинской страты весовой коэффициент составит: wукр. =10000:400=25. Соответственно для русского населения: w русск. = 80000 : 400 = 200. С учетом этих весовых коэффициентов уточненная оценка среднего запаса варенья в выборке составит: х = 25 • 50 • 400 + 200 • 40 • 400 / 100000 = 37 кг. Если бы мы не учли в своих расчетах сверхпредставительность украинцев в нашей непропорциональной стратифицированной выборке, то оценка среднего запаса варенья для всей совокупности оказалась бы завышенной (45 кг). 14 Подробнее см.: Sudman S, Applied sampling. N. Y.: Academic Press, 1975. P. 126—130. Четвертый тип вероятностной выборки, используемой социологами,— это кластерная выборка. «Кластеры» (дословно с англ.—гроздья)—это естественные группировки единиц наблюдения. Например, популяция избирателей имеет тенденцию жить в городах и деревнях, генеральная совокупность военнослужащих естественным образом группируется по воинским частям и подразделениям, а совокупность студентов — по университетам, институтам и колледжам. Способность к образованию локальных группировок, которую обнаруживают генеральные совокупности, изучаемые социологами, при соблюдении ряда условий позволяет уменьшить расходы на получение единицы информации. Цель использования кластерной выборки таким образом заключается в повышении эффективности затрат на проведение исследования. При фиксированном бюджете и объеме выборки социолог получает возможность снизить общие расходы на проведение личных интервью преимущественно за счет уменьшения транспортных расходов15. В общем случае кластерная выборка основана на первоначальном отборе группировок (кластеров) и затем — на изучении всех единиц внутри кластеров. Возможными примерами кластеров, используемых в больших общенациональных опросах, являются сельские районы, городские квартиры, избирательные участки. При изучении специфических популяций используются иные кластеры: больницы — при изучении пациентов, школы — при изучении школьников и т. п. Корректное применение кластерной процедуры основано на неукоснительном соблюдении четырех необходимых условий16: 1) кластеры должны быть однозначно и явно заданы: каждый член генеральной совокупности должен принадлежать к одному (и только одному) кластеру; 2) число членов генеральной совокупности, входящих в каждый кластер, должно быть известно или поддаваться оценке с приемлемой степенью точности; 3) кластеры должны быть не слишком велики и географически компактны, иначе кластерная выборка теряет всякий финансовый смысл; 4) выбор кластеров должен быть осуществлен таким способом, который минимизирует рост выборочной ошибки (последний процесс, в свою очередь, является неизбежным следствием кластеризации). Для того чтобы уяснить, как именно кластерная процедура влияет на рост выборочной ошибки, рассмотрим ее на простейшем примере. Допустим, мы изучаем труд и занятость жителей небольшого сельского района. Для того чтобы составить полный список-основу для случайной выборки, нам пришлось бы предварительно посетить все сельские советы, а в некоторых случаях — и весьма отдаленные деревни. Располагая ограниченными ресурсами, мы решаем использовать имеющуюся в нашем распоряжении карту района, на которой отмечены все населенные пункты, включая самые небольшие хутора. Известна и 15 Соответственно использование кластерной процедуры отбора лишено смысла при проведении почтовых опросов, централизованных телефонных интервью и локальных обследований. 16 Sudman S. Op. cit. P. 70. численность населения для каждого пункта. Естественными границами кластеров-поселений являются шоссе и проселочные дороги. Составив список всех 40 деревень и хуторов, мы можем теперь без труда осуществить простую случайную выборку кластеров. Для отдельного поселения вероятность попадания в выборку составит 1/40 . Если, например, мы собираемся опросить 200 человек, нам, скорее всего, потребуется отобрать 1—2 кластера-поселения. Отметим здесь, что естественные различия в величине кластеров17 никак не влияют на процедуру кластерного отбора. Что при этом происходит с выборочной ошибкой и, следовательно, с получаемыми в нашем исследовании статистическими параметрами генеральной совокупности сельского населения района (т. е. с оценками возраста, дохода и т. п.)? Чтобы ответить на этот вопрос, мы должны ввести еще одно статистическое понятие «независимых наблюдений» (степеней свободы). Предположим, мы хотим оценить соотношение работающих и пенсионеров в обследуемом нами районе. Мы отобрали, условно, три деревни по 30 домовладений каждая (итого 90 домовладений). Однако в ходе опроса выясняется, что в двух деревнях, не входящих ни в одно сельхозобъединение или кооператив, живут исключительно старики-пенсионеры, а в одной, построенной недавно для переселенцев из Средней Азии, живут только молодые семьи с детьми. Таким образом, каждая деревня является населенной либо только работающими семейными парами, либо исключительно «пенсионерской». В результате мы можем заранее предсказать результат обследования каждой деревни (кластера), посетив лишь один дом. Если в первом доме интервьюер обнаружит чету пенсионеров, во всех остальных домах тоже будут жить пенсионеры. Если в первом доме живут люди трудоспособного возраста, посещение остальных 29 домовладений приведет к тому же результату. Фактически для каждой деревни мы будем располагать одним независимым наблюдением и, посетив 90 семей в трех деревнях, получим лишь три независимых, информативных наблюдения относительно распределения работающих и пенсионеров в выборке. Соответственно наши оценки величины данного соотношения в генеральной совокупности окажутся более неточными, чем в случае 90 независимых наблюдений. Причина возникающей ошибки заключается в том, что использованные нами кластеры (деревни) оказались гомогенными, однородными по исследуемому признаку трудовой занятости, хотя по другим признакам, например, по политической активности, они вполне могут быть гетерогенными, неоднородными. В принципе можно показать, что рост выборочной ошибки для кластерной выборки (в сравнении с простой случайной) является функцией двух переменных — величины кластеров и гомогенности исследуемого признака внутри каждого кластера18. Ясно, что оценка гомогенности часто становится важной практической задачей в планировании кластерной выборки. Основная проблема здесь заключается в том, что соответствующими данными о распределении признаков внутри кластеров исследователь располагает после завершения собственно полевой стадии. Практически при проектировании выборки обычно основываются на уже существующих данных предыдущих исследований, переписей и т. п. Мера го- 17 В нашем случае так называемой территориальной кластерной выборки таковыми являются различия в численности населения отдельных деревень и хуторов. 18 См.: Sudman S. Op. cit. P. 73—78.
могенности р ведет себя так же, как соответствующий коэффициент корреляции. Величина р — это корреляция между значениями признака для всех возможных парных сочетаний элементов, входящих в кластер. Эта величина обычно положительна и возрастает с ростом гомогенности элементов внутри кластера. Если наблюдения внутри кластера абсолютно независимы (как в примере случайного распределения между разными кластерами), то р = 0. При использовании территориальной кластерной выборки городского населения, например при отборе кварталов или многоэтажных домов, р для признаков экономического статуса может быть весьма высоким из-за «пороговых» эффектов: в престижном кооперативном доме маловероятно встретить семьи с очень низкими доходами (верхний порог) и, наоборот, лишь немногие состоятельные люди обитают в коммуналках, подобно герою «Золотого теленка» Александру Ивановичу Корейко (нижний порог). Ориентировочное представление о типичных значениях р и их изменении для кластеров разной величины для общенационального выборочного исследования дает табл. 7.2. В таблице показаны величины р для имеющих разные размеры кластеров, составленных из соседних городских домовладений (квартир и домов). Данные таблицы основаны на выборке городского населения США (N>100000)19. Еще одной немаловажной практической проблемой в планировании кластерной либо стратифицированной выборки является сравнение эффективности 19 Источник: Hansen M., Hurwitz W. N., Madow W. G.. Sample Survey Methods and Theory. N. Y.: Wiley and Sons, 1953. 2 vols. (Vol. 1. P. 264. Table 3). Знаки «О» перед запятой опущены. затрат на исследование при разных среднем размере кластера и количестве кластеров (заметим, что и кластеры, и страты часто обозначают общим термином — «первичные единицы отбора»). Функция, описывающая зависимость расходов от вышеперечисленных двух переменных, выглядит так: Сt = ас1 + пс2, где Сt — общая стоимость исследования, а — количество «первичных единиц отбора», с1— средние затраты на обследование первичной единицы отбора, планируемые для данного исследования, n — общий размер планируемой выборки, с2 — средние затраты на проведение одного интервью20. Дальнейшим обобщением идей случайного отбора из субпопуляций и естественных группировок, лежащих в основе, соответственно стратифицированной и кластерной выборок, является многофазная (многоступенчатая) выборка. Построение такой выборки представляет собой довольно сложную статистическую задачу, подходы к решению которой мы рассмотрим лишь в самом обобщенном виде. В простейшем случае многофазная выборка состоит из двух фаз случайного отбора. На первой — как при кластерном отборе — выбираются «первичные единицы отбора», например, районы, избирательные участки, предприятия. На второй фазе производится случайный отбор единичных членов генеральной совокупности — отдельных респондентов, семей и т. п. Так как «первичные единицы отбора» могут существенно отличаться по величине (как, например, отличаются друг от друга городские квартиры или дома с разной численностью проживающих), то результатом первой фазы может стать неравная вероятность попадания в выборку для членов генеральной совокупности, относящихся к разным «первичным единицам отбора». В этом случае исследователь имеет возможность выравнивания вероятностей на последующих фазах (например, из «первичной единицы отбора», где проживает 1000 семей, он выберет 10, а из «первичной единицы», где живет 500 семей, будет отобрано 20). Рассмотрим многофазную процедуру на простейшем примере с равной вероятностью отбора. Пусть нам необходимо осуществить выборку размером 2000 человек из генеральной совокупности населения крупного города, где проживает 4 млн человек. Каждая «первичная единица отбора» — городской квартал — содержит 1000 единиц (т. е. отдельных респондентов). На первой фазе мы отберем из 100000 кварталов («первичных единиц отбора») 400, так что для каждого квартала вероятность попадания в выборку составит: 400:100000=0,004. На следующей стадии из 1000 жителей каждого квартала мы отберем 50, так что для каждого респондента суммарная накопленная вероятность попадания в двухфазную выборку составит: 0,004 x (50: 1000) =0,0002. 20 См.: Sudman S. Op. cit. P. 78—79; Hansen M., Hurwitz W. N.. Madow W. G. Op. cit. Решение об использовании многофазной выборки обычно принимается после анализа «баланса» затрат и приобретений. Снижение затрат на сбор данных, достигаемое в этом случае, сопровождается увеличением сложности выборочной процедуры. С ростом числа фаз (в больших общенациональных обследованиях нередко используют 4 или 5 «ступенек» отбора — от области до квартала) точность получаемых оценок имеет тенденцию снижаться. Поэтому исследователям нередко приходится сочетать многофазный отбор со стратификацией на завершающих стадиях выборочной процедуры, что обычно ведет к улучшению характеристик выборки21'. Отсюда понятно, почему многофазная выборка в значительной мере остается «прерогативой» крупных исследовательских организаций, которые обладают значительными финансовыми ресурсами и могут воспользоваться услугами профессионалов-статистиков при проектировании выборки. Размер вероятностной выборки Вопрос об оптимальном размере вероятностной выборки всегда был спорным и, в значительной мере, остается таковым. Мы обсудим лишь основные принципы, лежащие в основе современного подхода к оптимизации размера выборки. Решение относительно размера выборки принимают с учетом целого ряда факторов, среди которых самую существенную роль играют два; 1) ценность и новизна получаемой в результате опроса информации и 2) затраты на проведение опроса (включая временные) при заданном размере выборки. Некоторые исследователи полагают, что принятие решения о размере выборки может основываться на сугубо статистическом подходе22. При этом в расчет принимают допустимую величину ошибки в оценке исследуемого параметра (например, дохода). Существуют статистические формулы, связывающие размер выборки с вероятностью ошибки и величиной доверительного интервала, задающего пределы этой ошибки (два последних понятия подробнее обсуждаются в гл. 8). Так как использование этих формул требует принятия определенных предположений о том, как распределена интересующая исследователя величина, возникает необходимость в предварительной информации, относящейся к тому самому параметру, который мы решили изучить. Трудности, возникающие при использовании классического статистического подхода к определению размера вероятностной выборки, можно описать одной фразой, принадлежащей известному специалисту по массовым опросам С. Судману: «Очевидно, что формула, описывающая зависимость размера выборки от предполагаемой ширины доверительного интервала и приемлемой вероятности 21 Примером многофазной (многоступенчатой) стратифицированной выборки может служить выборка «Всесоюзного этносоциологического исследования» (рук. Ю. В. Ару-тюнян, 1971—1976 гг.). См. подробнее: Арутюнян Ю. В., Дробижева Л.М., Кондратьев В. С., Сусоколов А. А. Цит. соч. С. 111—123. Отметим также, что впервые в отечественной социологии многоступенчатая территориальная вероятностная выборка использовалась в исследовании читателей газеты «Правда», проводившемся В. Э. Шляпентохом в 1970-е гг. 22 См.: Кокрен У. Методы выборочного исследования. М.: Статистика, 1976. ошибки, попросту заменяет проблему определения размера выборки другой, не менее трудной проблемой — определения ширины доверительного интервала»23. Во многих важных случаях можно руководствоваться сложившейся практикой, т. в. размером выборки, использовавшейся в аналогичных исследованиях. Кроме того, нужно помнить о простейших «правилах левой руки» для определения размера выборки.
«Типичные» размеры выборок для общенациональных опросов варьируют в пределах 1000—2500 респондентов (в зависимости от числа анализируемых подгрупп), для региональных опросов и опросов специальных популяций — от 200 до 500 (при анализе многочисленных подгрупп размер региональной или специальной выборки обычно возрастает как минимум до 1000 человек). Указанные значения, разумеется, могут служить лишь самым общим ориентиром для определения оптимального размера выборки. Целевой отбор Иногда социологи вынуждены применять не основанные на вероятностях выборки. Отбор в этом случае базируется не на принципе рандомизации, а на следовании тем или иным субъективным критериям — доступности, типичности, равного представительства и т. п. Многие из этих критериев при систематичес- 23 Sudman S. Op. cit. P. 89. ком использовании позволяют добиться достаточно высокого качества социологических данных. Часто такой отбор называют целевым, так как он в большой степени определяется целями исследования. Кроме того, в конкретной исследовательской ситуации может оказаться, что осуществление случайной выборки — это практически невыполнимое или экономически неэффективное мероприятие (затраты на построение выборки превышают ценность получаемой в результате исследования информации). Наконец, использование вероятностного отбора лишено всякого смысла, если речь идет об исследовании уникальных событий, групп или ситуаций — полетов на Луну, войн или любовных историй (об этнографическом методе, применяемом в такого рода исследованиях, говорится в гл. 2). Основной недостаток неслучайных процедур отбора связан с тем, что не существует строгих статистических методов, позволяющих обобщить результаты, полученные в ходе исследования выборки. Оценка точности и валидности этих результатов (и основанных на них выводов) остается делом субъективного суждения, опыта, теоретических предпочтений. Самый распространенный тип не основанной на вероятности выборки — это выборка доступных случаев. Такого рода выборка может считаться корректной лишь тогда, когда используется в экспериментальном (или квазиэкспериментальном) исследовании. Так, в большинстве психологических экспериментов испытуемыми являются студенты. Это позволяет экономить скудные финансовые ресурсы, отпускаемые на сугубо академические изыскания. Для того чтобы исключить влияние посторонних, смешивающих факторов, экспериментатор в случайном порядке распределяет выборку доступных случаев (т. е. доступных испытуемых) по двум группам — экспериментальной и контрольной. В нашем обсуждении роли рандомизации в эксперименте (гл. 4) подчеркивалось ее значение для получения точных и обоснованных выводов. Однако случайное приписывание испытуемых-добровольцев к экспериментальной и контрольной группам, строго говоря, не является достаточным основанием для обобщения результатов эксперимента для всей генеральной совокупности, из которой осуществлялась выборка доступных случаев. Точнее, в ситуации отбора доступных случаев невозможно с полной уверенностью сказать, что, собственно, являлось генеральной совокупностью в процессе исследования, так как последняя не была определена с самого начала. Поэтому, в частности, шутливое определение предмета психологии гласит, что это наука, изучающая студентов-второкурсников гуманитарных факультетов. В социологии выборкой доступных случаев чаще всего приходится довольствоваться при изучении таких специальных популяций, которые практически не поддаются локализации. Речь идет, прежде всего, об относительно малочисленных группах, находящихся вне сферы институционального (например, административного) контроля. Для таких групп трудно найти какую-то основу выборки — скажем, посетители стрелковых тиров едва ли состоят на каком-нибудь государственном учете. «Просеивание» большой случайной выборки из генеральной совокупности с целью рекрутирования сколько-нибудь значительного числа респондентов в специальную выборку требует непомерных затрат. Поэтому социологам иногда приходится уподобляться орнитологам и отбирать членов экзотических популяций в местах их «естественного обитания» или вероятного скопления. Многие исследования посетителей массовых библиотек проводятся в библиотеках, посетителей выставок — в музеях, ветеранов войны — в клубах ветеранов и т. п. В этой ситуации исследователю приходится прилагать дополнительные усилия для получения высококачественной информации. Следует заметить, что некоторая статистическая «небезупречность» получаемых таким образом результатов, при должной методической культуре исследователей, иногда окупается, и мы узнаем нечто принципиально новое об относительно «закрытых» областях человеческого поведения24. Однако если целью исследования является описание распределения признаков во вполне определенной генеральной совокупности (покупателей зубной пасты, избирателей, читателей газет), то социолог, использующий выборку доступных случаев, понапрасну тратит деньги заказчика (и пренебрегает профессиональной этикой). Квалифицированному заказчику в этом случае также не стоит принимать всерьез рассуждения о принципиально новых, нестатистических и даже «мягких» методах проведения массовых опросов. Значительно реже социологи используют две другие разновидности целевого отбора — отбор «критических случаев» и отбор «типичных случаев». В обоих случаях исследователь полагается на какие-то теоретические представления или предыдущий опыт, чтобы отобрать ограниченное число «симптоматических», характерных наблюдений, позволяющих сделать более широкие обобщения и предсказания. Иногда это удается, но следует помнить о том, что опыт и теоретические суждения обычно бывают субъективны. В печально знаменитых президентских выборах 1948 г. в Америке (Г. Трумэн против Т. Дьюи) ошибочные прогнозы сделали все знаменитые институты опросов общественного мнения. При этом некоторые из них избрали в качестве «типичного» случая население штата Мэн, так как прежде жители этого штата всегда «угадывали» будущего президента. В описываемом случае «нетипично» (т. е. за проигравшего выборы Дьюи) проголосовали только два штата — Мэн и Вермонт. Поэтому поговорку «Как голосует Мэн, голосует вся Америка» пришлось перефразировать: «Как голосует Мэн, так голосует Вермонт»25. Метод «снежного кома»—это еще один (наряду с выборкой доступных случаев) интересный подход к отбору из «редких» совокупностей. Его идея такова: первоначально идентифицированная небольшая группа членов интересующей социолога совокупности служит источником сведений о других членах этой совокупности, так что выборка постепенно разрастается вширь подобно снежному кому, катящемуся с горы. Этот метод использовал, например, П. Лазарс-фельд с коллегами в исследовании «влиятельных людей» и неформальных связей. Помимо властвующих элит данный метод применяют в изучении других групп, также избегающих широкой известности,—например, наркоманов или коллекционеров антиквариата. Для этого метода существуют определенные 24 В отечественной литературе примеры очень интересных исследований, основанных на целевом отборе, особенно многочисленны (причиной чему, очевидно, является хроническая недостаточность финансирования социологических исследований). Общее представление об используемых в них методах повышения качества информации можно составить, ознакомившись с несколькими хорошими работами, например: 47 пятниц. Функционирование общественного мнения в условиях города (программы и документы исследования). М.: ССА, 1969. Вып. 1.; ШубкинВ. Н. Начало пути. М.: Молодая гвардия, 1979; Клявина Т. А., Хршановская С. П. В поисках зрителя (итоги опроса руководителей театров РСФСР) // Социологические исследования. 1988. № 3. С. 47—53. 25 Henry G. T. Op. cit. P.21. приемы оценки систематической ошибки, однако они слишком сложны, чтобы обсуждаться здесь. К выборкам, не основанным на случайном отборе, относится и квотная выборка, когда-то чрезвычайно популярная даже среди профессиональных статистиков и практически не используемая сейчас. Идея квотной выборки проста: изучаемая совокупность разбивается на такие социально-демографические группы, которые исследователь почему-либо считает важными. Обычно критериями разбивки становятся пол, возраст, национальная принадлежность, место жительства и т. п. Далее, основываясь на уже известных (обычно из официальной статистики) пропорциях этих групп в генеральной совокупности, социолог составляет полевые задания для интервьюеров, указывая, сколько женщин, мужчин, лиц с высшим образованием и т. п. нужно опросить. Например, интервьюер получает задание опросить десять женщин старше 50 лет, восемь мужчин 35—45 лет и трех восемнадцатилетних девушек, проживающих в г. Санкт-Петербурге. В результате должна получиться выборка, представляющая все заданные пропорции групп в генеральной совокупности. Основная проблема квотного отбора заключается в том, что он носит неслучайный характер и осуществляется лично интервьюером. Последний выбирает респондентов, в конечном счете, по собственному усмотрению. Хотя число мужчин или женщин, рабочих или пенсионеров, которых следует опросить в данном районе или местности, задано заранее, интервьюер решает, в какую квартиру ему удобнее позвонить, с кем из членов семьи провести интервью, куда вернуться вторично, если на звонок никто не ответил, и т. п. Это неизбежно ведет к систематическим смещениям в процессе отбора, причем не существует никаких методов для оценки величины возникающей систематической ошибки. Еще один очевидный недостаток квотного отбора связан с тем, что обычно невозможно даже приблизительно оценить количество отказов от участия в опросе. Если интервьюер сталкивается с человеком, не желающим отвечать на вопросы, или просто недоброжелательным, или вызывающим у него антипатию, интервьюер всегда волен попрощаться и попытать счастья в соседней квартире. По указанным причинам квотные выборки «вышли из моды» среди социологов, несмотря на свою относительную дешевизну. Оценивая полезность и применимость вышеописанных «неслучайных» методов отбора в исследовательской практике, следует, прежде всего, сказать, что в определенных обстоятельствах никакой другой альтернативы просто не существует. В ситуации нехватки денег, персонала, времени либо первичной информации о генеральной совокупности социологи использовали и будут использовать впредь выборки доступных случаев, метод «снежного кома» и даже (к сожалению) квотную выборку. При этом профессиональный долг социолога заключается в том, чтобы оценить, пусть даже очень приблизительно, величину и источники возникающей выборочной ошибки. Безусловно, разумно использовать целевые выборки в пилотажных исследованиях, в экспериментах, в том числе методических (т. е. нацеленных на проверку и отработку анкет, опросников, шкал и т. п.). Однако всегда следует помнить о том, что возможность обобщения любых оценок, полученных на целевой выборке, для генеральной совокупности в целом, т. е. внешняя валидность результатов исследования, чаще всего оказывается сомнительна26. Дополнительная литература Кокрен У. Методы выборочного обследования. М.: Статистика, 1976. Петренко Е. С., Ярошенко Т. М. Социально-демографические показатели в социологических исследованиях. М.: Статистика, 1979. Территориальная выборка в социологических исследованиях. М.: Наука, 1980. Чурилов Н. Н. Проектирование выборочного социального исследования. Киев: Наукова думка, 1986. 26 Предвыборные опросы общественного мнения, проводившиеся различными российскими исследовательскими центрами в первой половине 1990-х гг., изобилуют столь многочисленными подтверждениями этой истины, что трудно выбрать один «негативный пример» для критического рассмотрения. Систематический анализ просчетов в организации выборки таких опросов содержится в работах: Шляпентох В. Э. Предвыборные опросы 1993 г. в России (критический анализ) // Социологические исследования. 1995. № 10. С. 3—10; Мансуров В. А., Петренко Е. С. Изучение общественного мнения в России и СССР // Социология в России. М.: На Воробьевых, 1996. Богатый эмпирический материал, относящийся к ошибочным прогнозам итогов выборов в Думу 1995 г., см. в статье: Рубинов А. Социология сказала... //Лит. газета. 1995. 13 дек. |