Главная страница
Навигация по странице:

  • Метко называют архитектуру дочерью геометрии.

  • Пирамиды

  • Это одна из первых конструкций, которая представляет собой сооружения, состоящие из вертикальных стоек и покрывающих их горизонтальных балок.

  • Кромлех состоял из отдельно стоящих камней, которые накрывались горизонтальными камнями. При этом они образовывали две или несколько концентрических окружностей.

  • Большинство современных жилых домов в своей основе имеют именно стоечно-балочную конструкцию.

  • Каркасная конструкция

  • Математика необходима рабочим многих специальностей, имеющим дело с обработкой дерева, металла.

  • математика в архитектуре. Математика в архитектуре. Математика в архитектуре Геометрия и архитектура


    Скачать 6.07 Mb.
    НазваниеМатематика в архитектуре Геометрия и архитектура
    Анкорматематика в архитектуре
    Дата09.04.2022
    Размер6.07 Mb.
    Формат файлаppt
    Имя файлаМатематика в архитектуре.ppt
    ТипДокументы
    #456742

    Математика в архитектуре

    Геометрия и архитектура

    • Геометрия - наука, давшая людям возможность находить площади и объемы, правильно чертить проекты зданий и машин. Она является основной частью «фундамента», на котором строится архитектура. Архитектура - это соединение искусства, науки и производства.
    • Метко называют архитектуру дочерью геометрии.

    Симметрия в архитектуре

    • Треугольники в конструкции мостов
    • Высоковольтные линии электропередачи.
    • Треугольники делают конструкции надежными.
    • Треугольники
    • Люди с древних времен, возводя свои жилища, думали, в первую очередь, об их прочности и долговечности. Благодаря этому, до наших дней дошли и древнегреческий Парфенон, и древнеримский Колизей. Прочность сооружения обеспечивается не только материалом, из которого оно создано, но и конструкцией, которая используется в качестве основы при его проектировании и строительстве. Прочность сооружения напрямую связана с геометрической формой.

    Пирамиды

    • Самым прочным архитектурным сооружением с давних времен считаются египетские пирамиды. Они имеют форму правильных четырехугольных пирамид.
    • Именно эта геометрическая форма обеспечивает наибольшую устойчивость за счет большой площади основания. Форма пирамиды обеспечивает уменьшение массы по мере увеличения высоты над землей. Именно эти два свойства делают пирамиду устойчивой, а значит и прочной в условиях земного тяготения.
    • На смену пирамидам пришла стоечно-балочная система. она представляет собой многогранник, который получится, если мысленно на два вертикально стоящих прямоугольных параллелепипеда поставить еще один прямоугольный параллелепипед.
    • Это одна из первых конструкций, которая представляет собой сооружения, состоящие из вертикальных стоек и покрывающих их горизонтальных балок.
    • Первым таким сооружением было культовое сооружение – дольмен. Оно состояло из двух вертикально поставленных камней, на которые был поставлен третий вертикальный камень.
    • Кроме дольмена, до нас дошло еще одно сооружение, представляющее простейшую стоечно-балочную конструкцию – кромлех. Это культовое сооружение, предназначенное для жертвоприношений и ритуальных торжеств.
    • Кромлех состоял из отдельно стоящих камней, которые накрывались горизонтальными камнями. При этом они образовывали две или несколько концентрических окружностей.
    • Самый знаменитый кромлех сохранился до наших дней в местечке Стоунхендж в Англии. Некоторые ученые считают, что он был древней астрономической обсерваторией.
    • Большинство современных жилых домов в своей основе имеют именно стоечно-балочную конструкцию.

    Арочно-сводчатая конструкция

    • С появлением арочно-сводчатой конструкции в архитектуру прямых линий и плоскостей, вошли окружности, круги, сферы и круговые цилиндры. Первоначально в архитектуре использовались только полуциркульные арки или полусферические купола.

    Пантеон

    • Полусферический купол имеет Пантеон – храм всех богов - в Риме. Диаметр купола составляет 43 м. При этом высота стен Пантеона равна радиусу полусферы купола. В связи с этим получается, что само здание этого храма как бы “накинуто” на шар диаметром 43 м.

    Каркасная конструкция

    • Арочная конструкция послужила прототипом каркасной конструкции, которая сегодня используется в качестве основной при возведении современных сооружений из металла, стекла и бетона. Достаточно вспомнить конструкции известных башен: Эйфелевой башни в Париже и телебашни на Шаболовке.
    • Телебашня на Шаболовке состоит из нескольких поставленных друг на друга частей однополостных гиперболоидов. Причем каждая часть сделана из двух семейств прямолинейных балок. Эта башня построена по проекту замечательного инженера В.Г.Шухова
    • Каркасная конструкция
    • 19 марта 2007 года Шуховской башне на Шаболовке исполнилось 85 лет.

    Пентагон

    • Геометрическая форма сооружения настолько важна, что бывают случаи, когда в имени или названии здания закрепляются названия геометрических фигур. Так, здание военного ведомства США носит название Пентагон, что означает пятиугольник. Связано это с тем, что, если посмотреть на это здание с большой высоты, то оно действительно будет иметь вид пятиугольника. На самом деле только контуры этого здания представляют пятиугольник. Само же оно имеет форму многогранника.

    Спасская башня

    • В Спасской башне Московского кремля в основании можно увидеть прямой параллелепипед, переходящий в средней части в фигуру, приближающуюся к цилиндру, завершается же она пирамидой. При более детальном рассмотрении и изучении деталей можно увидеть: круги – циферблаты курантов; шар – основание для крепления рубиновой звезды; полукруги – арки одного из рядов бойниц на фасаде башни и т.д.
    • Современный архитектурный стиль, благодаря возможностям современных материалов, использует причудливые формы, которые воспринимаются нами через их сложные, изогнутые (выпуклые и вогнутые) поверхности.
    • Таким образом, можно говорить о пространственных геометрических фигурах, которые служат основой сооружения в целом или отдельных его частей, а также плоских фигурах, которые обнаруживаются на фасадах зданий.
    • При постройке современных зданий, различных сооружений, технических устройств необходимы знания математики.
    • Математика необходима рабочим многих специальностей, имеющим дело с обработкой дерева, металла.
    • Посмотри на мир вокруг себя внимательно, и ты увидишь, что все связано с математикой.


    написать администратору сайта