Главная страница
Навигация по странице:

  • Рис. 15.2. Блок-схема передатчика с непосредственной ЧМ.

  • Рис. 15.3. Блок-схема передатчика с косвенной ЧМ.

  • 15.3. Многоканальный передатчик с ЧМ

  • Рис. 15.4. Стереопередатчик с ЧМ.

  • 15.4. Телевизионный передатчик

  • Рис. 15.5. Блок-схема цветного телевизионного передатчика.

  • 15.5. Приемник АМ-сигналов

  • Рис. 15.6. Блок-схема супергетеродинного приемника.

  • Мендл М. 200 избранных схем электроники. Матью Мэндл 200 избранных схем электроники редакция литературы по информатике и электронике 1978 PrenticeHall, Inc


    Скачать 2.25 Mb.
    НазваниеМатью Мэндл 200 избранных схем электроники редакция литературы по информатике и электронике 1978 PrenticeHall, Inc
    АнкорМендл М. 200 избранных схем электроники.pdf
    Дата15.01.2018
    Размер2.25 Mb.
    Формат файлаpdf
    Имя файлаМендл М. 200 избранных схем электроники.pdf
    ТипДокументы
    #14120
    КатегорияЭлектротехника. Связь. Автоматика
    страница17 из 18
    1   ...   10   11   12   13   14   15   16   17   18

    15.2. Одноканальный передатчик с ЧМ
    Существует несколько методов получения ЧМ-сигналов, Блок-схема передатчика с непосредственной
    частотной модуляцией приведена на рис. 15.2. Неотъемлемой частью такой схемы является реактансная схема.
    Для получения сигнала, модулированного по частоте, требуется изменять частоту несущей со скоростью, зависящей от частоты модулирующего сигнала. Таким образом, если частота модулирующего сигнала равна
    100 Гц, частота несущей после модуляции будет отклоняться от средней частоты в обе стороны 100 раз в секунду. Аналогично, если частота модулирующего сигнала равна 2 кГц, то частота модулированного сигнала будет изменяться 2000 раз в секунду. Величина же отклонения частоты от ее среднего значения опре-дечяется амплитудой модулирующего сигнала. При увеличении амплитуды модулирующего сигнала отклонение частоты несущей от среднего значения возрастает.
    Поскольку частота несущей непрерывно изменяется в процессе частотной модуляции, генератор несущей должен позволять осуществлять перестройку частоты. Для того чтобы частота несущей была стабильной, применяется кварцованный автогенератор. Кроме того, для той же цели используется схема автоматической подстройки частоты.
    Рис. 15.2. Блок-схема передатчика с непосредственной ЧМ.
    Генератор с регулируемой частотой в схеме на рис. 15.2 имеет частоту, равную

    1/18 частоты несущей.
    Таким образом, если частота несущей равна 90 МГц, то частота генератора составит 5 МГц. Максимальное отклонение (девиация) частоты поддерживается в пределах 4,2 кГц с тем, чтобы обеспечить линейную частотную модуляцию. Если, например, отклонение частоты генератора равно 4 кГц, то отклонение частоты на выходе составит 72 кГц, так как за счет умножения отклонение частоты также увеличивается в 18 раз.
    В данной схеме кварцованный автогензратор вырабатывает колебания частотой 2,8 МГц. Затем эта частота удваивается до 5,6 МГц и подается на смеситель, на который также поступают сигналы частотой 5 МГц от генератора с регулируемой частотой. На выходе смесителя образуется сигнал разностной частоты 600 кГц, который поступает на схему автоматической подстройки частоты (АПЧ).
    При работе схемы в ней поддерживается устойчивое состояние. Если частота генератора отклоняется от значения 5 МГц, то сигнал разностной частоты на выходе смесителя не будет совпадать с резонансной
    частотой, на которую настроена схема АПЧ. В результате на выходе схемы АПЧ появится напряжение, которое будет действовать как управляющий сигнал, корректирующий уход частоты генератора (см. также разд. 4.6).
    Как показано на рисунке, управляющий сигнал с выхода схемы АПЧ проходит через фильтр нижних частот и подается на реактансную схему. Последняя осуществляет коррекцию ухода частоты генератора с регулируемой частотой (см. гл. 12). Фильтр нижних частот используется для того, чтобы модулирующие колебания, которые содержатся в сигнале 0,6 МГц, не попадали на реактансную схему. Этот фильтр обычно пропускает сигналы частотой не более 10 Гц. Благодаря исключению сигналов звуковой частоты они не будут оказывать влияния на функцию управления. Если же звуковые составляющие не будут отфильтрованы, то они приведут к появлению реактивности, противоположной по знаку той, которая возникает под действием сигналов, подаваемых с модулирующей схемы. В результате частотная модуляция несущей может свестись к нулю. Так как уход частоты генератора с регулируемой частотой происходит с очень небольшой скоростью, то изменение напряже- ния на выходе схемы АПЧ происходит с частотой значительно ниже 10 Гц, т. е. в пределах полосы фильтра нижних частот.
    Другой метод получения ЧМ-сигналов представлен на рис. 15.3. Вначале осуществляется амплитудная модуляция, которая затем преобразуется в частотную путем смещения боковых составляющих на 90° и воссоединения боковых составляющих и несущей. Здесь используется маломощная частотная модуляция, поэтому образуются только две боковые составляющие достаточной амплитуды. Путем сдвига фазы боковых составляющих получается фазовая модуляция, которая может быть преобразована в частотную при помощи схемы коррекции. В схеме на рис. 15.3 используется кварцованный автогенератор, сигналы которого после умножения частоты образуют несущую. Звуковые сигналы с усилительного выходного каскада подаются на балансный модулятор, на который поступают также сигналы с кварцованного автогенератора. В балансном мо- дуляторе осуществляется амплитудная модуляция несущей звуковыми сигналами. Две боковые составляющие
    АМ-сигнала подаются на квадратурную фазосдвигающую схему. Две боковые полосы затем объединяются с несущей, которая подается от кварцованного автогенератора через буферный усилитель. Таким образом, осуществляется косвенная частотная модуляция. В последующих каскадах происходит умножение частоты до требуемого значения. В балансном модуляторе несущая подавляется, так что на его выходе получаются только сигналы боковых составляющих (см. гл. 6).
    Рис. 15.3. Блок-схема передатчика с косвенной ЧМ.
    При фазовой модуляции девиация несущей является функцией частоты звукового модулирующего сигнала, умноженной на максимально допустимый сдвиг фазы. Следовательно, более высокой частоте звукового сигнала будет соответствовать большая величина девиации несущей в отличие от частотной модуляции, где девиация зависит только от амплитуды звукового сигнала. Для уравнивания девиации с тем, чтобы она со- ответствовала значению, которое имеет место при ЧМ, вводится корректирующая цепь, показанная на рис. 15.3.
    Эта цепь состоит из последовательного резистора и параллельного конденсатора. Сопротивление pesncTqpa выбирается таким образом, чтобы оно было значительно больше реактивного сопротивления конденсатора во всем диапазоне звуковых частот. Поэтому осуществляется компенсация характеристик, полученных во время фазовой модуляции сигналов, и на выходе сигнал приобретает свойства ЧМ-сигнала.
    Выходной сигнал с корректирующей цепи снимается с конденсатора, поэтому амплитуда сигналов
    изменяется в зависимости от частоты. На низких частотах конденсатор имеет большое реактивное сопротивление и оказывает слабое шунтирующее действие В этом случае амплитуда сигнала, по существу, полностью передается на следующий каскад. Однако на более высоких частотах реактивное сопротивление конденсатора уменьшается так что он оказывает более сильное шунтирующее влияние Поэтому при возрастании частоты амплитуда сигналов поступающих с корректирующей схемы на выходной уси-титель уменьшается. Эта операция, обратная процессу фазовой модуляции, приводит к компенсации последней. В результате осуществляется процесс, эквивалентный стандартной частотной
    МОДУЛЯЦИИ
    ,
    при которой одинаковым амплитудам звуковых сигналов соответствуют одинаковые отклонения частоты несущей независимо от частоты.
    15.3. Многоканальный передатчик с ЧМ
    Как было показано ранее в разд. 6.4, в радиовещательных ЧМ-системах 100%-ная модуляция определяется как девиация частоты по 75 кГц в обе стороны от несущей. В ЧМ стерео- или других многоканальных системах передача должна осуществляться таким образом, чтобы спектр частот оставался в заданных пределах определяемых указанной 100%-ной модуляцией. Таким образом, в процессе стереопередачи различные модули- рующие сигналы не должны приводить к превышению пределов определяемых 100%-ной модуляцией.
    В системах высокого качества модулирующие звуковые сигналы обычно находятся в диапазоне частот 30
    Гц- 15 кГц. Могут быть использованы и более высокие модулирующие частоты но при условии, что их амплитуда не будет слишком велика и полоса частот не превысит заданных пределов. При более высокой частоте модулирующих сигналов скорость девиации несущей возрастает. Таким образом, применение более высокочастотных модулирующих сигналов позволяет реализовать удобный метод формирования сигналов в многоканальных (стерео-) системах.
    Рис. 15.4. Стереопередатчик с ЧМ.
    Пои передаче стереосигналов должна обеспечиваться совместимость т. е. возможность приема как стерео-, так и обычным одноканальным приемником. Для обеспечения совместимости стереостанции ведут передачу моносигнала, получаемого сложением двух сигналов от разных источников. При этом звуковые сигналы с левого и правого микрофонов подаются на модулирующую схему основного ЧМ-передатчика, который
    является основным каналом. Такой способ иллюстрируется на рис. 15.4, ?де сигналы левого (Л), и правого (П) каналов подаются на моносмеситель. Эти сигналы затем поступают на модулятор генератор несущей и другие схемы, составляющие основной ЧМ-передатчик.
    Для передачи стереосигналов требуются дополнительные схемы, которые образуют отдельно левый и правый каналы. С этой целью формируется разностный сигнал путем вычитания правого сигнала из левого
    (правый и левый сигналы подаются на смеситель со сдвигом фаз 180°). Разностный сигнал используется для модуляции дополнительной несущей (называемой поднесущей) по амплитуде (AM), в результате чего образуются боковые составляющие. Эти боковые составляющие отдельно модулируют несущую по частоте.
    Поднесущая частота подавляется, и поэтому при приеме стереосигналов она должна восстанавливаться в приемнике (см. разд. 15.7).
    Частота поднесущей равна 38 кГц (генератор вырабатывает частоту 19 кГц, которая затем удваивается для получения требуемой частоты 38 кГц). Сигнал частотой 19 кГц также передается (путем модуляции несущей) для синхронизации стерео-детектора в приемнике. При этом сигнал частотой 19 кГц, называемый пилот- сигналом, осуществляет неглубокую модуляцию несущей (приблизительно 10%). Этого оказывается достаточно для удвоения этой частоты с целью восстановления поднесущей 38 кГц в приемнике. В приемнике поднесущая демодулируется вместе с боковыми составляющими стереосигнала (см. рис. 9.6).
    Боковые составляющие, которые получаются в результате модуляции поднесущей частотой 38 кГц разностным сигналом, не совпадают с модулирующими моносигналами; боковые составляющие располагаются в диапазоне частот 23 — 53 кГц. Как и в случае моносигнала, диапазон частот звуковых стереосигналов находится в пределах 30 Гц — 15 кГц. Таким образом, многоканальный модулирующий сигнал при ЧМ- стереопередаче состоит из моносигнала (Л + П), частота которого лежит в звуковом диапазоне 30 Гц — 15 кГц, пилот-сигнала (поднесущей) частотой 19 кГц и (Л — П)-сигнала (23 — 53 кГц) с подавленной при передаче несущей частотой 38 кГц. При передаче музыкальных записей производится также модуляция основной несущей сигналами по двум каналам при помощи вспомогательного генератора, как показано на рисунке штриховыми линиями.
    Метод совмещения каналов (subsidiary communications authorization — SCA) позволяет в передающей станции использовать дополнительные каналы, кроме канала обычного радиовещания. ЧМ-канал используется для радиовещания, а совмещенный (SCA) канал — только для передачи сигналов со звукоснимателя, например для звукового сопровождения и других вспомогательных целей. Как показано на рис. 15.4, вспомогательный генератор является по существу миниатюрным ЧМ-пе-редатчиком (по сравнению с основным передатчиком) с частотой поднесущей 67 кГц.
    15.4. Телевизионный передатчик
    В телевидении изображение передается по способу амплитудной модуляции несущей, как и при обычной
    АМ-радиопере-даче. Для передачи сигналов звукового сопровождения используется частотная модуляция.
    Разность между частотами несущей изображения и несущей звука составляет 4,5 МГц (см. рис. 5.14, а).
    При передаче черно-белого изображения требуется передавать и сигналы для синхронизации кадровой и строчной разверток. Однако в цветном телевидении при модуляции несущей используются, кроме того, сигналы цветности и дополнительные синхронизирующие сигналы.
    В черно-белом телевизионном приемнике задающий генератор вырабатывает колебания основной частоты, из которых получают сигналы для схем развертки. Частота колебаний задающего генератора равна 31,5 кГц.
    Для получения частоты строчной (развертки 15750 Гц она делится на два, а для получения частоты кадровой развертки 60 Гц ее делят на 7, 5, 5 и 3. В случае передачи цветного изображения эти частоты несколько отличаются из-за особенностей ширины спектра и синхронизации. При цветной передаче требуется генерировать под-несущую и осуществлять ее модуляцию для получения боковых составляющих сигналов цветности, а затем несущую требуется подавить ввиду того, что отведенная для передачи полоса частот ограничена. Поэтому в приемнике несущую следует восстановить и смешать с боковыми составляющими для последующей демодуляции цветоразностных сигналов.
    Таким образом, частота строчной развертки в цветном телевизионном приемнике равна 15734,264 Гц, а частота поднесу-щей при этом составляет 3,579545 МГц (3,58 МГц). Частота кадровой развертки в цветном телевизионном приемнике равна 59,94 Гц. Так как частоты строчной и кадровой разверток в цветном приемнике близки к соответствующим частотам в черно-белом приемнике, то при нормальных условиях работы не возникает никаких проблем при переходе от приема черно-белого изображения к цветному.
    Основные блоки передающего устройства цветного телевидения показаны на рис. 15.5. Передающая камера цветного телевидения со специальной передающей трубкой и линзовой системой воспринимает три основных цвета изображения. Исходя из принципа аддитивности цвета, такими цветами являются красный (R), синий (В)
    и зеленый (G).
    Как следует из схемы, приведенной на рис. 15.5, схемы усиления и развертки формируют на выходе три составляющих (сигналы красного, зеленого и синего) передаваемого изображения. Сигналы R, G и В далее подаются на три матричные схемы, две из которых содержат фазоинверторы. Выходные сигналы матриц обозначены У, 7 и Q. Сигнал У, как было отмечено выше, называют яркостным сигналом. Он получается
    сложением трех сигналов основных цветов — красного, зеленого и синего — в соотношении 0,3:0,59:0,11.
    Соблюдение такого соотношения необходимо для компенсации неодинаковой чувствительности глаза человека к различным цветам.
    Рис. 15.5. Блок-схема цветного телевизионного передатчика.
    Два основных цветоразностных сигнала состоят из I-сигнала (в фазе) и Q-сигнала (квадратурного). Сигнал I содержит 0,6 сигнала красного, 0,28 сигнала зеленого и 032 сигнала синего. Соотношение этих составляющих для сигнала Q следующее: R : G : B = 0,21 : 0,52 : 0,13.
    Сигналы I и Q подаются на балансные модуляторы, где они модулируют две поднесущие частотой 3,58
    МГц, сдвинутые по фазе на 90°, причем сигнал I опережает сигнал Q. В балансных модуляторах поднесущая и сигналы I и Q подавляются, а на выход проходят только боковые колебания поднесущей. Сигнал У через фильтр поступает на сумматор, куда подаются также выходные сигналы с балансных модуляторов.
    Формирователь сигналов цветовой синхронизации, на который поступают сигналы от генератора частотой
    3,58 МГц, вырабатывает 9-периодный сигнал частотой 3,58 МГц, который передается на заднем уступе строчного гасящего импульса и служит для синхронизации генератора поднесущей в приемнике (см. разд. 4.6).
    Все сигналы, включая синхронизирующие сигналы и гасящие импульсы строк и полей, складываются в сумматоре. Сформированный таким образом полный телевизионный сигнал подается на усилитель-модулятор, где при необходимости он усиливается, и затем поступает на оконечный модуляционный каскад, работающий в режиме усиления класса С. Как и в других передатчиках с AM, здесь используется генератор с кварцевой стабилизацией. Сигналы с этого генератора умножаются по частоте, усиливаются и подаются на усилитель класса С. Для передачи сигналов звукового сопровождения используется отдельный передатчик с ЧМ. Таким образом, в телевизионном передающем устройстве используются два передатчика: один с амплитудной, а другой с частотной модуляцией.
    15.5. Приемник АМ-сигналов

    Блок-схема приемника АМ-сигналов изображена на рис. 15.6. Здесь представлена супергетеродинная схема приема, которая положена в основу большинства приемников, используемых в системах связи.
    Сигнал с выхода антенны через ВЧ-усилитель (см. рис. 3.4) поступает на преобразователь частоты, включающий в себя гетеродин и смеситель. В приемниках с низкой чувствительностью высокочастотного усилителя может и не быть; тогда сигнал с выхода антенны подается непосредственно на преобразователь, как показано на рисунке штриховой линией (см. также рис. 4.2).
    Гетеродин преобразователя вырабатывает колебания требуемой частоты, которые, смешиваясь в смесителе с принимаемыми колебаниями модулированной несущей, образуют на выходе смесителя колебания промежуточной (разностной) частоты. Значение промежуточной частоты 455 кГц является стандартным для радиовещательных приемников [Промежуточная частота приемников, используемых в различных областях радиоэлектроники, изменяется в очень широких пределах. — Прим. Ред].
    Рис. 15.6. Блок-схема супергетеродинного приемника.
    Со смесителя сигнал подается на усилитель промежуточной частоты для дополнительного усиления и фильтрации мешающих сигналов, которые появляются в процессе гетеродинирова-ния. После усиления сигнал промежуточной частоты демодули-руется в детекторе, и выделяется звуковой сигнал. Так как звуковые сигналы на выходе детектора довольно слабые, их усиливают в обычном звуковом усилителе до уровня, необходимого для их дальнейшего воспроизведения в громкоговорителе.
    Независимо от частоты принимаемых сигналов промежуточная частота приемника сохраняет определенное значение. Для этого настроечные конденсаторы высокочастотного усилителя, смесителя и гетеродина связывают между собой, так что в процессе настройки их роторы вращаются одновременно. Параллельно каждому из основных конденсаторов настройки включают подстроечный конденсатор небольшой емкости для обеспечения точной настройки во всем диапазоне работы приемника (см. рис. 4.2). Таким образом, независимо от частоты принимаемого сигнала гетеродин обеспечивает получение сигнала промежуточной (строго фиксированной) частоты; обычно частота гетеродина выше несущей частоты сигнала. Следовательно, если станция ведет передачу на частоте несущей 1000 кГц, то для получения разностной частоты 455 кГц частота колебаний гетеродина должна быть равна 1455 кГц.
    1   ...   10   11   12   13   14   15   16   17   18


    написать администратору сайта