Мендл М. 200 избранных схем электроники. Матью Мэндл 200 избранных схем электроники редакция литературы по информатике и электронике 1978 PrenticeHall, Inc
Скачать 2.25 Mb.
|
МОДУЛЯЦИОННЫЕ УСТРОЙСТВА 6.1. Основные виды модуляции Модуляция по существу является процессом изменения сигнала радиочастотной несущей таким образом, чтобы стала возможной передача некоторой информации. Такая необходимость возникает, например, в радиовещании, которое служит для передачи низкочастотных звуковых сигналов, содержащих информацию в виде речи и музыки с полосой от 30 Гц до 20 кГц. Сигналы указанной полосы частот не могут быть переданы электрическим способом на сколько-нибудь значительные расстояния. Поэтому должны быть использованы радиочастотные сигналы, способные распространяться на большие расстояния. Так как радиочастотные сигналы могут быть переданы на требуемые расстояния, это свойство и используется для передачи звуковой информации. Аналогично этому сигналы изображения (видеосигналы) модулируют радиочастотные колебания несущей, так что последняя «переносит» информацию о изображении (см. разд. 15.1 — 15.4). Радиочастотная несущая модулируется путем изменения формы ее колебаний в соответствии с модулирующими сигналами. Известны несколько способов достижения такого изменения, к ним относятся амплитудная (AM), частотная (ЧМ) и фазовая модуляции (ФМ). Во всех трех случаях появляются сигналы боковых полос, которые вместе с несущей образуют составной модулированный передаваемый сигнал. Наряду с описанием усилителя и других устройств в данной книге представлены сведения и о специальных модулирующих устройствах. 6.2. Режим однотактной AM При амплитудной модуляции амплитуда колебаний несущей частоты изменяется звуковыми или видеосигналами, что вызывает появление сигналов боковых частот или боковых полос. Более подробно это описано в следующих разделах данной главы. Сигналы боковых полос и несущая образуют составное ко- лебание, амплитуда которого изменяется в соответствии с модулирующим сигналом. В случае транзисторных цепей для амплитудной модуляции колебаний несущей могут быть использованы несколько способов. Один из них состоит в модуляции напряжения смещения транзистора. В этом случае рабочая точка, соответствующая немодулированному напряжению смещения, находится за пределами отсечки и амплитуда колебаний несущей устанавливается таким образом, чтобы немодулированные пики оказались посреди области между состояниями насыщения и отсечки. Модулирующее напряжение включается последовательно с постоянным напряжением смещения, приложенным к базе. Поэтому результирующее напряжение смещения будет изменяться в соответствии с модулирующими сигналами, в результате чего вы- ходной сигнал окажется модулированным. В биполярных транзисторах, таким образом, необходимо изменять ток базы. В случае же канальных приборов вследствие их очень высокого входного сопротивления можно было бы просто изменять входное напряжение. Аналогично этому при достаточно большом сопротивлении, включенном в цепь базы, вторичную обмотку модулирующего трансформатора можно было бы включить по- следовательно с эмиттером для изменения смещения в соответствии с модулирующим сигналом. При любом способе модуляции путем изменения смещения может произойти перегрузка модуляционного каскада, так что необходимо следить за тем, чтобы удерживать модулирующий сигнал, в пределах границ, определяемых пределами возможного размаха тока коллектора (от нуля до тока насыщения). Широко используется схема модуляции в цепи коллектора (или в цепи стока в случае полевого транзистора). Однотакт-ная схема такого способа модуляции показана на рис. 6.1. Модулирующий сигнал вводится последовательно в цепь питания коллектора транзистора Т 1 оконечного каскада усилителя несущей, работающего в режиме класса С. Для этой цели используется вторичная обмотка L 5 выходного звукового (или видео-) трансформатора, называемого модулирующим трансформатором. Для получения несущей применяется генератор с кварцевой стабилизацией частоты, сигнал которого усиливается до требуемого уровня при помощи нескольких последовательно включенных каскадов усиления класса С (см. разд. 15.1 и рис. 15.1). Перед модулятором на транзисторе Т 2 также обычно используется несколько каскадов усиления звуковых сигналов. На первый из этих каскадов поступает сигнал от микрофона или другого источника (телефона, магнитофона и т. д.). В схеме, показанной на рис. 6.1, колебания несущей на выходе резонансного контура в отсутствие модуляции имеют постоянную амплитуду. Поскольку ток коллектора транзистора Т 1 усилителя класса С протекает через вторичную обмотку модулирующего трансформатора, любое падение напряжения на этой вторичной обмотке будет складываться или вычитаться из. напряжения, прикладываемого к коллектору. (Ссылка на напряжение используется для пояснения процесса, поскольку любое изменение приложенного напряжения в режиме класса С вызывает изменение коллекторного тока. Поэтому в процессе-модуляции изменяются также и уровни мощности.) Функционально модулятор является обычной высококачественной системой усиления звуковых сигналов. Когда на микрофон (или другой звуковой преобразователь) воздействует звук, на выходе L 4 появляется отображающий его сигнал. В случае-положительного полупериода звукового колебания на выходе-верхний конец обмотки L 5 находится под положительным потенциалом, а нижний — под отрицательным. При этом условии напряжение звуковой частоты эффективно увеличивает напряжение, приложенное к усилителю класса С, поскольку полярность звукового колебания совпадает с полярностью положительного напряжения источника коллекторного питания +17. В этом случае (рис. 6.1) амплитуда колебаний несущей увеличивается на величину, равную амплитуде звукового модулирующего сигнала. При отрицательном выходном звуковом модулирующем сигнале верхний конец обмотки L 5 будет находиться под отрицательным потенциалом, а нижний — под положительным. Это напряжение в данном случае имеет полярность, обратную полярности напряжения источника питания +U, и общее напряжение, приложенное к усилителю класса С, уменьшается. В этом случае, как показано на рис. 6.1, амплитуда колебаний несущей уменьшается. Если к модулятору больше не прикладываются: звуковые сигналы, амплитуда несущей опять принимает свое первоначальное значение, соответствующее номинальной мощности несущей. Рис. 6.1. Однотактная схема амплитудной модуляции. Если эквивалентное активное сопротивление колебательного контура имеет постоянное значение, то мощность несущей изменяется пропорционально квадрату напряжения. Поэтому при: полном размахе модуляции пиковая выходная мощность колебания несущей усилителя класса С достигает величины, в четыре раза превышающей уровень мощности немодулированной несущей. В соответствии с этим при полной (100%- ной) модуляции амплитуда колебаний несущей изменяется от нуля до удвоенной амплитуды немодулированной несущей. Рис. 62. а — перемодуляция; б — 50%-ная модуляция; в — частота верхней боковой полосы модуляции; г — частота нижней боковой полосы модуляции. В процессе модуляции средний ток коллектора, поступающий к усилителю класса С от источника питания, не изменяется, поскольку последовательные увеличения тока коллектора,, вызываемые модулятором, уравновешиваются аналогичными: уменьшениями тока коллектора. При 100%-ной модуляции выходная мощность модулятора должна быть равна половине входной мощности усилителя класса С. В этом определении под входной мощностью усилителя класса С понимается произведение постоянного напряжения коллектора усилителя класса С на постоянный ток коллектора. Во время передачи звуковых, музыкальных или видеосигналов глубина модуляции постоянно изменяется вследствие изменений амплитуды, которые имеют место для различных уровней громкости, прикладываемых к входу модулятора. Глубина модуляции определяется отношением мощности модулирующего сигнала к половине входной мощности усилителя несущей. Если амплитуда модулирующего сигнала слишком велика, это может привести к перемодуляции (рис. 6.2, а). При перемодуляции в течение короткого интервала времени амплитуда несущей падает до нуля, вследствие чего возникают искажения. Поэтому необходимо следить за тем, чтобы пики звукового модулирующего сигнала не приводили к глубине модуляции, превышающей 100%. Если уменьшить глубину модуляции, то (рис. 6.2, б) изменение амплитуды составного сигнала несущей становится менее отчетливым. Как показано на рис. 6.2, в и г, в процессе амплитудной модуляции для каждой частоты модулирующего сигнала образуются две боковые частоты модуляции радиочастотных сигналов. Поэтому, если несущая имеет частоту 1000 кГц и модулирована сигналом частотой 400 Гц, частота сигнала одной боковой полосы будет на 400 Гц больше частоты несущей, т. е. будет равна 1000,4 кГц, а частота сигнала другой боковой полосы будет на 400 Гц меньше частоты несущей, т. е. 999,6 кГц. Если бы несущая была модулирована сигналом частотой 1000 Гц, сигнал верхней боковой полосы имел бы частоту 1001 кГц, а сигнал нижней боковой полосы — 999 кГц. При наличии в модулирующем сигнале колебаний нескольких частот образуется несколько боковых частот модулированных колебаний. Изменения амплитуды модулированных колебаний, показанных на рис. 6.1, свидетельствуют об изменении мощности составного сигнала, включающего составляющие боковых полос, В процессе амплитудной модуляции амплитуда колебаний собственно несущей частоты не изменяется, однако мощности сигналов боковых полос изменяются пропорционально уровням амплитуды модулирующего сигнала. В случае модуляции в цепи коллектора мощность сигнала боковой полосы определяется модулятором. Поэтому сигнал, показанный на рис. 6.1, представляет собой сумму несущей и составляющих боковых полос. Если составное колебание с изменениями амплитуды подвергнуть процессу фильтрации для удаления составляющих верхней и нижней боковых полос модуляции, останется сигнал несущей постоянной амплитуды. В схеме, показанной на рис. 6.1, коэффициент трансформации модулирующего трансформатора выбирается таким образом, чтобы обеспечить согласование выходного импеданса трансформатора с импедансом усилителя класса С. Модулированная несущая прикладывается к параллельному резонансному контуру и передается на вторичную обмотку L 2 , с которой колебания снимаются для подачи в антенную систему (в случае модуляции при высоком уровне сигнала) или на вход линейного усилителя класса В (при низком уровне сигнала). 6.3. Режим двухтактной AM На рис. 6.3 показана схема выходного усилителя несущей класса С и модулятора, работающих в режиме двухтактной модуляции. Процесс модуляции идентичен ранее описанному, за исключением того, что двухтактная схема является симметричной, обеспечивает большую выходную мощность и меньшие гармонические искажения радиочастотного и звукового (или видео-) сигналов. Обратите внимание на то, что линия подачи питания через включенную последовательно вторичную обмотку модулирующего трансформатора соединена со средним отводом индуктивности резонансного контура. Благодаря этому обеспечивается симметрия двухтактной схемы. К верхнему и нижнему отводам катушки индуктивности схемы параллельного резонанса подключены конденсаторы для перекрестной нейтрализации (гл. 3). Для улучшения симметрии такой схемы и обеспечения возможности заземления ротора хорошо подходят переменные конденсаторы с разрезными статорами. Заземление ротора уменьшает опасность поражения электрическим током при настройке каскадов усиления мощности класса С. Как обычно, в радиочастотной передающей схеме ДВЧ служит для развязки радиочастотного сигнала. При отсутствии дросселя некоторая часть сигнала попадала бы в схему модулятора и в источник питания, что приводило бы к уменьшению общего уровня мощности радиочастотного сигнала, обеспечиваемого данной системой. Рис. 6.3. Двухтактная схема амплитудной модуляции. 6.4. Ширина полосы ЧМ В процессе частотной модуляции звуковой модулирующий сигнал вызывает смещение частоты несущей вверх и вниз относительно ее обычной резонансной частоты (называемой также средней частотой) со скоростью, определяемой частотой модулирующего сигнала (см. разд. 15.2). Поэтому при звуковом частотномодулирующем сигнале частотой 500 Гц частота несущей отклоняется вверх и вниз от средней частоты 500 раз в секунду. Величина отклонения зависит от амплитуды модулирующего сигнала. Например, если в случае звукового сигнала 500 Гц несущая отклоняется выше и ниже средней частоты на 15 кГц, то увеличение амплитуды звукового сигнала может увеличить девиацию до 20 кГц по каждую сторону от средней частоты при той же частоте модулирующего сигнала 500 Гц. При еще большем увеличении амплитуды звукового сигнала частота несущей может отклониться на 30 кГц по каждую сторону от средней частоты (при той же частоте модулирующего сигнала). В случае модулирующего сигнала частотой 1000 Гц частота несущей отклоняется выше и ниже средней частоты 1000 раз в секунду, а величина отклонения будет определяться амплитудой модулирующего сигнала частотой 1000 Гц. Рис. 6.4 Ширина спектра излучения радиопередающей станции с частотной модуляцией сигналов. В случае стандартного ЧМ-радиовещания (88 — 108 МГц) максимально допустимая девиация, установленная Федеральной комиссией связи (США), составляет 75 кГц по каждую сторону от средней частоты. Поэтому максимальная девиация частоты равна 150 кГц. Выше и ниже этой максимальной девиации отводятся две боковые полосы по 25 кГц, служащие для защиты от паразитного проникновения сигналов соседних по частоте станций, которые могут создать помехи данной станции. На рис. 6.4 показан спектр полосы частот одной станции с частотной модуляцией. ЧМ-канал звукового сопровождения в телевещании имеет гораздо меньшую ширину полосы (50 кГц) при максимальной девиации 25 кГц по каждую сторону от средней частоты. 6.5. Коэффициенты частотной модуляции На рис. 6.5 показаны временные диаграммы ЧМ-колебаний несущей и колебаний звукового модулирующего сигнала одной частоты. В моменты, когда величина звукового модулирующего сигнала принимает нулевое значение, частота ЧМ-несущей равна средней частоте. Рис. 6.5. ЧМ-несущая и модулирующий сигнал. Как и в процессе амплитудной модуляции, при частотной модуляции образуются боковые полосы. Однако если при AM частота каждой составляющей звукового модулирующего сигнала вызывает появление двух боковых частот, то при ЧМ частоте каждой составляющей звукового модулирующего сигнала соответствует ряд боковых частот. Боковые частоты отстоят друг от друга на частоту, равную частоте модулирующего сиг- нала. Поэтому, если для модуляции используется сигнал частотой 1 кГц, первые две боковые частоты отстоят от несущей на 1 кГц, причем одна боковая частота находится выше, а другая — ниже несущей. Следующая пара боковых частот будет отстоять от соседних с ними еще на 1 кГц. Боковые частоты, ближайшие к несущей частоте, имеют наибольшую амплитуду, поэтому для последующего процесса детектирования в приемнике имеет значение только несколько боковых частот по каждую сторону от несущей. В стандартном ЧМ- радиовещании следует учитывать до восьми боковых частот, образованных в процессе модуляции. Это основывается на отношении девиации несущей к уровню звукового сигнала. Для частотной модуляции отношение отклонения (девиации) частоты несущей к частоте модулирующего сигнала, вызывающего девиацию частоты несущей, называется индексом модуляции (не путать с коэффициентом девиации, речь о котором пойдет ниже). Индекс модуляции m f определяется отношением (6.1) где Af H — девиация частоты несущей и f м — частота модулирующего сигнала. В отличие от индекса модуляции коэффициент девиации определяется максимальными значениями девиации частоты и частоты модулирующего сигнала: Для любого индекса модуляции от 1 до 10 число имеющих значение боковых полос может быть найдено из следующей таблицы: Индекс модуляции Число боковых полос по каждую сторону от несущей 1 2 2 4 3 6 4 7 5 8 6 9 7 10 8 12 9 13 10 14 Мощность боковой полосы при ЧМ представляется несущей, поэтому во время процесса модуляции амплитуда несущей несколько изменяется. Когда изображается составной сигнал несущей (с составляющими боковых полос), амплитуда колебания кажется постоянной (рис. 6.5), причем очевидными представляются лишь изменения частоты выше и ниже средней частоты. 6.6. Обеспечение стабильности частоты несущей при ЧМ Как будет показано в гл. 15, частотная модуляция может быть реализована двумя методами: прямым и косвенным. В системе прямой модуляции необходимо стабилизировать частоту несущей. Для осуществления этого используется фазовый детектор, вырабатывающий корректирующее напряжение, которое подается на реактансный каскад, обеспечивающий стабильность частоты несущей. Один из вариантов функциональной свя- зи фазового детектора (дискриминатора) с остальными элементами устройства управления частотой ЧМ- колебаний, а также принципиальная схема дискриминатора изображены на рис. 6.6. Рис. 6.6. Схема обеспечения стабильности частоты несущей. Устройство автоматической регулировки частоты называется дискриминатором. Он используется для поддержания частоты ЧМ-генератора в окрестности отведенной средней частоты несущей. В то же время дискриминатор должен позволять частоте генератора смещаться в соответствии с модулирующими сигналами. Приведенные на схеме рис. 6.6 генераторы, усилители класса С и другие устройства аналогичны уже рассмотренным ранее. В фазовом дискриминаторе на катушку индуктивности L 2 через конденсатор связи Се подается опорное напряжение, которое образуется в резонансном контуре L 1 C 7 смесителя. В то же время благодаря трансформаторной связи между катушкой LI и катушками LS и L 4 выходное напряжение смесителя поступает на два плеча дискриминатора с соблюдением фазовых соотношений, описываемых в гл. 7. Фазовый дискриминатор формирует выходной корректирующий сигнал, прикладываемый к реактансному каскаду, который в свою очередь управляет частотой генератора с регулируемой частотой (гл. 12). Генератор с кварцевой стабилизацией вырабатывает колебания стабильной опорной частоты; обычно эта частота значительно ниже частоты требуемой ЧМ-несущей, поскольку генератор более низких частот работает более стабильно. Поэтому, если, например, частота колебаний генератора с кварцевой стабилизацией равна 4,25 МГц, то, используя ряд удвоителей и утроителей частоты, повышают эту частоту до тех пор, пока она не окажется близкой к частоте сигнала, вырабатываемого оконечным радиочастотным усилителем класса С. В данном конкретном ЧМ-передатчике частота несущей равна 105 МГц и находится в пределах стандартного диапазона частот, отведенного для ЧМ-радиовещания (от 88 до 108 МГц). Этот сигнал частотой 105 МГц получен умножением частоты ЧМ-генератора, которая также выбирается ниже частоты несущей. Малая де- виация на такой низкой частоте в этой модулирующей системе повышается до требуемой для вещания величины при помощи схем умножения частоты, которые не только повышают частоту генератора, но одновременно повышают и величину отклонения частоты несущей. Поэтому девиация частоты, получаемая при помощи реактансного каскада, может составлять всего несколько килогерц, но затем она повышается до требуемого значения путем последовательного умножения частоты модулированной несущей. Так, например, пусть генератор с регулируемой частотой предназначен для работы на средней частоте 5,833 МГц, а ряд последовательно включенных удвоителей и утроителей для данной радиостанции повышает несущую частоту в 18 раз, т. е. до 105 МГц. Если девиация частоты равна 4 кГц, то в процессе умножения частоты это значение будет утроено, удвоено и вновь утроено и достигнет значения 72 кГц, что близко к мак- симально разрешенной девиации в этой полосе частот, отведенной для ЧМ-радиовещания. Сигнал, получаемый на выходе оконечного радиочастотного усилителя класса С, а также сигнал с выхода оконечного усилителя кварцованного генератора поступают в смеситель. В случае схемы, показанной на рис. 6.6, эти сигналы имеют частоты 105 и 102 МГц, и на выходе смесителя образуется разностная частота 3 МГц. Разностный сигнал частотой 3 МГц подается на фазовый дискриминатор, настроенный на эту частоту. Если сигналы на входе смесителя не изменяются, то частота выходного сигнала смесителя остается равной 3 МГц и напряжение на выходе фазового дискриминатора (на R 2 и R 5 ) равно нулю. В этом случае к реактансному каскаду не прикладывается никакого корректирующего напряжения и средняя частота генератора с регулируемой частотой не меняется. Фазовый дискриминатор не вырабатывает выходного сигнала при постоянстве частот подаваемых на него сигналов вследствие того, что падения напряжений на R 2 и R?, равны по величине, но противоположны по знаку и поэтому компенсируют друг друга; более подробно это объясняется при описании работы дискриминатора ЧМ-сигналов в гл. 7. Если же средняя частота генератора с регулируемой частотой уходит от требуемого значения, то в процессе смешивания частот получается сигнал, отличный от сигнала частотой 3 МГц. В этом случае один диод дискриминатора проводит лучше другого и на выходных резисторах R 2 и Rs образуются различные падения напряжений. В результате этого возникает напряжение корректировки, которое прикладывается к реактансному каскаду, который в свою очередь корректирует частоту генератора с регулируемой частотой до требуемого значения 105 МГц. Увеличение или уменьшение относительно 3 МГц частоты сигнала на выходе смесителя определяет знак потенциала на выходе дискриминатора относительно земли. В свою очередь знак этого потенциала определяет, будет ли реактансный каскад увеличивать или уменьшать частоту генератора с регулируемой частотой (см. гл. 12). Конденсатор С 2 на входе реактансного каскада оказывает низкое реактивное сопротивление для радиочастотных сигналов и поэтому отфильтровывает их, предотвращая поступление на вход реактансного каскада. Таким образом, составляющие частотной модуляции, имеющиеся в фазовом дискриминаторе, не влияют на работу реактансного каскада. Реактивное сопротивление С 2 достаточно мало для сигналов радиочастоты, но не оказывает шунтирующего действия на постоянную составляющую напряжения, вырабатываемого дискриминатором. Поэтому конденсатор С 2 не влияет на поступление корректирующего сиг- нала на реактансный каскад. В обычных условиях работы частота генератора с регулируемой частотой быстро не меняется. Вследствие этого медленный дрейф частоты этого генератора обусловливает появление напряжения корректировки, а быстрые изменения, вызванные процессом модуляции, эффективно от- фильтровываются цепью из конденсатора С 2 и резистора Ri. 6.7. Балансный модулятор В гл. 15 описываются балансные модуляторы (рис. 15.3), выполняющие двойную функцию: модуляции несущей для получения боковых полос и подавления этой несущей с тем, чтобы на выходе присутствовали только сигналы боковых полос. На рис. 6.7 показана схема балансного модулятора такого типа на двух р — n — р-транзисторах. Обратите внимание на то, что сигнал радиочастотной несущей прикладывается к обмотке L 4 трансформатора, обеспечивающего передачу сигнала на обмотку L 3 . Последняя обмотка включена последовательно с источником напряжения питания. Поэтому радиочастотный входной сигнал прикладывается в фазе к обеим базам транзисторов T 1 и Т 4 . Следовательно, любой полупериод радиочастотного сигнала создает на обеих базах одинаковое изменение прямого смещения. Поэтому если, например, полярность напряжения на L 3 обратна прямому (отрицательному) смещению, действующему между базой и эмиттером, то уменьшение этого смещения уменьшает ток обоих коллекторов. Поскольку коллекторы транзисторов TI и Т 2 включены по двухтактной схеме, их коллекторные токи проходят в направлениях, показанных на рис. 6.7 стрелками. Изменения токов в L 5 и L 6 равны и противоположны по знаку, вследствие чего изменения токов, представляющих радиочастотные сигналы, взаимно уничтожаются (предполагается, что схема сбалансирована, а транзисторы и конденсаторы С 3 и С 4 являются идентичными). Рис. 6.7. Балансный модулятор. Вторичная обмотка L 2 входного трансформатора, через который подаются сигналы звуковых частот, имеет центральный отвод, поэтому к базам транзисторов прикладываются напряжения, сдвинутые по фазе относительно друг друга на 180°, что свойственно двухтактной схеме. Вследствие того что сигналы звуковых частот вызывают в транзисторах TI и Т 2 изменения коллекторных токов, токи несущей частоты в каждом транзисторе модулируются. При этом возникают боковые частоты модуляции, резонансными схемами для которых являются контуры, образованные C 3 L 5 и C 4 L 6 . Такие резонансные схемы имеют низкий импеданс для звуковых сигналов, поскольку частоты последних далеки от резонансных частот этих контуров, поэтому звуковые сигналы на выходе ослабляются. Вследствие подавления несущей на выходе системы балансного модулятора действуют только сигналы боковых полос модуляции. Конденсаторы C 1 и С 2 на входе представляют низкое реактивное сопротивление для радиочастотных сигналов, и поэтому через них осуществляется подача радиочастотных сигналов к базам транзисторов. Однако для сигналов звуковых частот, появляющихся на обмотке L 2 , эти конденсаторы обладают очень высоким реактивным сопротивлением, и поэтому сигналы не шунтируются. 6.8. Предварительная коррекция При частотной модуляции схема предварительной коррекции повышает отношение сигнал/шум для звуковых сигналов более высоких частот. Эта схема компенсирует шумы, вызываемые элементами схемы, причем такие нежелательные шумы заметнее при более широком диапазоне сигналов звуковых частот. Поскольку при ЧМ частотная характеристика в области звуковых частот простирается до 15 кГц, схема предварительной коррекции увеличивает усиление сигналов более высоких частот, поднимая их уровень выше уровня амплитуды шумового сигнала. Такая схема удобна для использования на практике и функционально оправдана, поскольку шумовые сигналы имеют фиксированную амплитуду по отношению к сигналам на данной частоте. Рис. 6.8. Схема предварительной коррекции. В соответствий с правилами, установленными Федеральной комиссией связи, коррекция начинается на частоте 400 Гц, на частоте 1,5 кГц увеличение усиления достигает 2 дБ, на частоте 2 кГц — 3 дБ. На частоте 2,5 кГц усиление увеличивается на 5 дБ, причем начиная с этой частоты нарастание усиления носит практически линейный характер, достигая 70 дБ на частоте 15 кГц. Как показано на рис. 6.8, основную схему предварительной коррекции образует комбинация из резистора и конденсатора. Конденсатор С 1 является конденсатором связи, однако его величина выбирается такой, чтобы он имел относительно высокое реактивное сопротивление для сигналов более низких частот и очень низкое сопротивление для сигналов более высоких частот. Поэтому номинал С 1 меньше номинала обычного конденсатора связи. Постоянная времени R 1 C 1 = 75 мкс и выбирается из соображений обеспечения наибольшего отношения сигнал/шум, но без чрезмерного увеличения девиации ЧМ-несущей вследствие увеличения амплитуды сигнала более высокой частоты. Необычно большие уровни сигнала в процессе модуляции могут привести к девиации несущей за пределы отведенной полосы пропускания. При использовании в передатчике схемы предварительной коррекции сигналов в приемнике должна применяться схема компенсации для устранения эффекта повышения амплитуды звуковых сигналов более высоких частот. Эффект, обратный получаемому при помощи схемы предварительной коррекции, достигается схемой компенсации, более подробно описанной в гл. 7. Такая схема для стереофонического радиовещания рассматривается в гл. 15 (рис. 15.8); схему предварительной коррекции не следует путать с корректирующей схемой (цепью) (рис. 15.3). 6.9. Ввод импульсов синхронизации в состав телевизионного сигнала В телевидении для передачи видеоинформации используется амплитудная модуляция, а для звукового сопровождения — частотная модуляция. Передача видеоинформации отличается от обычного АМ- радиовещания необходимостью излучения служебных импульсов различного типа с целью обеспечения синхронизации схем развертки в приемнике в соответствии с хронированием передатчика. В строго определенные моменты времени должны быть переданы импульсы кадровой и строчной разверток. Рис. 6.9. Телевизионные синхронизирующие сигналы. В черно-белом телевидении стандартная развертка состоит из 525 горизонтальных линий, т. е. строк, составляющих кадр, которые повторяются 30 раз в секунду. В итоге скорость развертки равна 15750 строка/с, что определяет частоту генератора строчной (горизонтальной) развертки как на передающей станции, так и в приемнике. Генератор кадровой развертки формирует сигнал, повторяющийся с частотой 60 Гц и содержащий гасящий импульс. Длительность такого сигнала составляет 850 мкс (он повторяется дважды в течение каждого кадра), а интервал обратного хода соответствует примерно времени развертки 30 строк. Поэтому для воспроизведения изображения остается 480 строк. Под действием напряжения вертикальной развертки электронный луч, двигаясь по горизонтали (строке), постепенно смещается вниз. При этом 262,5 строки образуют поле (field); два таких поля, чередуясь благодаря чересстрочной развертке (строки второго поля находятся между строк первого поля), составляют полный кадр с 525 строками. Этот процесс схож с использованием в кинопроекторе обтюратора для мгновенного гашения изображения с тем, чтобы оно для уменьшения мерцаний проецировалось на экран во время передачи каждого кадра дважды. На рис. 6.9 проиллюстрированы различные телевизионные синхросигналы. Строчные синхроимпульсы находятся на строчных гасящих импульсах, благодаря чему линий обратного хода не видно. Видеоинформация передается в интервалы времени между строчными гасящими импульсами. При передаче кадровых синхроимпульсов также необходимо гасить экран, но уже на более длительное время, чем при передаче строчных синхроимпульсов. Однако в течение времени запирания трубки кадровым гасящим импульсом необходимо осуществлять синхронизацию генератора строчной развертки, так как иначе по окончании действия кадрового гасящего импульса невозможно засин-хронизовать генератор строчной развертки. Поэтому в начале кадрового гасящего импульса вводят серию коротких импульсов (называемых уравнивающими импульсами). Уравнивающие импульсы имеют слишком малую длительность, чтобы запустить генератор кадровой развертки, однако они обеспечивают синхронизацию генератора строчной развертки. Импульс кадровой (полевой) синхронизации состоит как бы из серии импульсов. Такие импульсы, более подробно рассматриваемые в гл. 14, подаются на интегратор для формирования сигнала нужной амплитуды с целью обеспечения запуска генератора кадровой развертки. «Врезки» между импульсами предназначаются для обеспечения синхронизации генератора строчной развертки. После импульса кадровой развертки следуют до- полнительные уравнивающие импульсы, предназначенные для обеспечения синхронизации генератора строчной развертки. Частота повторения уравнивающих импульсов составляет 31,5 кГц, т. е. в два раза превышает частоту строчной развертки, равную 15750 Гц. Рис. 6.10. Схема ввода в видеосигнал уравнивающих импульсов. Для ввода уравнивающих импульсов в полный видеосигнал передатчика применяется несколько схем. На рис. 6.10 показана одна из таких схем, используемая для ввода 18 уравнивающих импульсов в полный видеосигнал во время периода передачи кадрового гасящего импульса. Во время ввода уравнивающих импульсов сигналы строчной синхронизации не передаются. Требуемый стробирующий сигнал состоит из импульса, длительность которого равна длительности девяти строк, а частота повторения 60 Гц. Такой стробирующий импульс прикладывается к первичной обмотке L 1 входного трансформатора и передается во вторичные обмотки L 2 и L 3 . Конденсаторы C 1 и С 2 включены между линиями питания положительным и отри- цательным напряжениями и землей. Поэтому вторичные обмотки L 2 и LZ аналогичны вторичной обмотке с центральным отводом, обеспечивающей реверсирование фаз сигналов, как и в случае двухтактной схемы: сигнал на базе транзистора Т 2 находится в противофазе с сигналом на базе транзистора T 3 . Вследствие использования n— р — n-транзисторов положительный сигнал на базе складывается с прямым смещением и увеличивает проводимость, в то время как отрицательный сигнал уменьшает прямое смещение и уменьшает проводимость или совсем запирает транзистор. Вначале предположим, что стробирующего импульса нет. Смещение, приложенное между базой и эмиттером транзистора T 2 , имеет обратное направление, поэтому этот транзистор заперт. Поскольку транзистор Т 2 включен последовательно с транзистором Т 1 , то и последний заперт, хотя к базе транзистора Т 1 прикладывается последовательность уравнивающих импульсов; поэтому на выходе схемы импульсов нет. К транзистору же Тз прикладывается прямое смещение, и поэтому он открыт. Следовательно, сигналы строчной синхронизации, поступающие на базу транзистора Т 4 , усиливаются и выделяются на выходном резисторе R 1 . В течение интервала времени, отводимого для ввода уравнивающих импульсов в полный видеосигнал, к базам Т 2 и Тз прикладывается стробирующий импульс. Амплитуда положительного импульса, прикладываемого к базе транзистора Т 2 , превышает уровень отрицательного обратного смещения, и транзистор Т 2 начинает проводить ток. Одновременно и транзистор Т 1 также начинает работать, и так как к его базе при- кладываются уравнивающие импульсы, то они выделяются на резисторе R 1 . Стробирующий импульс, прикладываемый к транзистору Тз, представляет для этого транзистора отрицательное смещение, запирающее его. В этом случае в течение интервала длительности стробирующего импульса, равного девяти строкам, импульсы строчной синхронизации на выход не передаются, поскольку Т 4 включен последовательно с транзистором Тз и поэтому также заперт. Таким образом, импульсы строчной синхронизации не проходят на выход в течение времени следования уравнивающих импульсов, и выходная последовательность сигналов состоит из импульсов строчной синхронизации с 18 уравнивающими импульсами, вводимыми во время передачи импульса кадровой синхронизации. 6.10. Ввод кадровых синхроимпульсов Как было показано на рис. 6.9, за шестью уравнивающими импульсами следует шесть кадровых синхроимпульсов. Для ввода требуемого числа кадровых синхроимпульсов используется другая схема стробирования (рис. 6.11). В этой схеме к транзистору Т 3 прикладывается стробирующий импульс, длительность которого равна длительности трех строк. Этот импульс задерживается на время, равное длительности трех строк, относительно стробирующего сигнала длительностью девять строк с тем, чтобы ввести импульсы кадровой синхронизации после ввода первых шести уравнивающих импульсов. Рис. 6.11. Схема ввода в видеосигнал импульсов кадровой синхронизации. Как показано на рис. 6.11, объединенные ранее импульсы строчной синхронизации и уравнивающие импульсы прикладываются к базе транзистора Т 1 и выделяются на выходном резисторе Rл независимо от работы схемы стробирования. Однако транзисторы Т 2 и Г 3 включены последовательно, причем их совместной нагрузкой также является резистор Ri. Поскольку через резистор Rs к базе транзистора T 3 прикладывается отрицательное напряжение, то при отсутствии стробирующего импульса транзистор T 2 заперт, и тем самым цепь проводимости транзистора Т 2 разорвана. Следовательно, при воздействии на базу транзистора Т 2 непрерывной последовательности импульсов кадровой синхронизации на выход схемы эти импульсы не прохо- дят. Когда же на вход базы транзистора Т 3 поступает стробирующий импульс длительностью три строки, причем положительный потенциал импульса достаточно велик, то транзистор Г 3 отпирается, вследствие чего начинает проводить и транзистор 7Y В этом случае кадровые синхроимпульсы усиливаются транзистором Т 2 ; они выделяются на выходном резисторе Ri и занимают место над шестью центральными уравнивающими им- пульсами. Такое объединение импульсов двух типов увеличивает крутизну передних фронтов импульсов кадровой синхронизации вследствие малого времени нарастания уравнивающих импульсов. Поскольку при объединении двух импульсов их амплитуды складываются, за схемой стробирования помещена схема огра- ничения, устраняющая любые выбросы амплитуды сигналов. Как показано на схеме, в ограничителе используется полевой транзистор Т 4 с напряжением смещения, устанавливаемым таким образом, чтобы срезание пиков сигналов производилось на требуемом уровне. Одновременно схема ограничения инвертирует сигналы, поэтому на ее выходе они имеют полярность, соответствующую полярности импульсов на входах трех транзисторов. 6.11. Схемы объединения сигналов После формирования различных сигналов синхронизации строчной и кадровой разверток необходимо их объединить с информативными сигналами изображения для получения полного видеосигнала, используемого для модуляции несущей. На рис. 6.12 показана типичная схема объединения сигналов. Полный сигнал синхронизации (строк и кадров) поступает на базу транзистора Г ь причем усиленному сигналу на выходном резисторе импульсы стробирования помех не создают. На базы транзисторов Т 2 , Т 3 и Г 4 подается отрицательное напряжение смещения. Поэтому при поступлении видеосигнала на базу транзистора Т 2 этот сигнал усиливается и выделяется на выходном нагрузочном резисторе. Однако при подаче на базу транзистора T 4 сигнала гашения с полярностью, противоположной прямому (отрицательному) смещению, транзистор 7 4 запирается. Поскольку транзисторы Т 2 , Г 3 и Г 4 включены последовательно, запирание любого из них приводит к запиранию двух других. По этой причине при подаче сигнала изображения на базу Г 2 выходной сигнал отсутствует (этот сигнал нежелателен во время интервалов передачи импульсов гашения и синхронизации). Запирание транзистора 7 4 и двух других, включенных с ним последовательно, приводит к появлению на выходном резисторе импульса гашения. Рис. 6.12. Схема объединения синхронизирующих импульсов и сигнала изображения. Аналогично этому при подаче кадрового гасящего импульса на базу транзистора Т 3 прямое смещение этого транзистора уменьшается, и он запирается. И в этом случае имеет место разрыв цепи для последовательно включенных трех транзисторов, и на выходе схемы видеосигналы отсутствуют. Резкое уменьшение амплитуды на выходном резисторе соответствует кадровому гасящему импульсу. Если на выходном резисторе появляются синхроимпульсы; строк или кадров, то они размещаются на гасящих импульсах, аналогично тому, как уравнивающие импульсы размещаются, на кадровом гасящем импульсе (см. рис. 6.9). Видеосигналы передаются между гасящими импульсами, поэтому в этой схеме осуществляется объединение полного видеосигнала. Обычно за схемой объединения следуют дополнительные усилители с тем, чтобы поднять напряжение полного видеосигнала до уровня, необходимого для модуляции несущей изображения. |