Главная страница

Мендл М. 200 избранных схем электроники. Матью Мэндл 200 избранных схем электроники редакция литературы по информатике и электронике 1978 PrenticeHall, Inc


Скачать 2.25 Mb.
НазваниеМатью Мэндл 200 избранных схем электроники редакция литературы по информатике и электронике 1978 PrenticeHall, Inc
АнкорМендл М. 200 избранных схем электроники.pdf
Дата15.01.2018
Размер2.25 Mb.
Формат файлаpdf
Имя файлаМендл М. 200 избранных схем электроники.pdf
ТипДокументы
#14120
КатегорияЭлектротехника. Связь. Автоматика
страница7 из 18
1   2   3   4   5   6   7   8   9   10   ...   18
Глава 5
ФИЛЬТРЫ И АТТЕНЮАТОРЫ (ОСЛАБИТЕЛИ)
5.1. Общие положения
Фильтры применяются для отфильтровывания некоторых сигналов из других сигналов или для предотвращения подачи определенных сигналов к последующему каскаду. Поэтому фильтры используют для того, чтобы ликвидировать нежелательные сигналы и шумы в системе, а также чтобы обеспечить пропускание одних сигналов и задержку других. Фильтры содержат реактивные L- и С-элементы. В отличие от фильтров аттенюаторы и магазины затухания базируются на резистивных элементах, как переменных, так и постоянных.
Их функция заключается в ослаблении сигналов при сохранении согласования импедансов входного и выходного каскадов. Благодаря этому уровни сигналов можно изменять без изменения характеристик каскада; при рассогласовании импедансов характеристики каскада изменялись бы. В этой главе рассмотрены основные типы фильтров и магазинов затухания.
5.2. Фильтры нижних частот типа k
Фильтр нижних частот предназначен для пропускания низкочастотных сигналов при ослаблении сигналов более высоких частот. Простейший фильтр нижних частот содержит всего два элемента (рис. 5.1, а): последовательно включенную катушку индуктивности
LI и параллельно включенный конденсатор Ci. Если на вход такого четырехполюсника подать сигналы различных частот, то для сигналов низких частот индуктивное сопротивление катушки
LI будет малым, и они пройдут на выход. Для сигналов высоких частот индуктивное
сопротивление велико, вследствие чего их величина на выходе будет уменьшена. В то же время для сигналов низких частот реактивное сопротивление параллельно включенного конденсатора Ci является высоким, а для сигналов высоких частот шунтирующее действие конденсатора весьма значительно, так что такие сигналы ослабляются.
Рис. 5.1. Фильтры нижних частот типа k и их частотная характеристика.
Простейший фильтр, схема которого показана на рис. 5.1, а, называется полусекцией. Иногда его называют также L-образным фильтром, поскольку сочетание элементов L и С напоминает перевернутую букву L [В отечественной литературе фильтр такой конфигурации известен как Г-образный. — Прим. ред.]. Более эффективная фильтрация обеспечивается фильтром с двумя катушками индуктивности (рис. 5.1,6). Такой фильтр называют T-образным, поскольку конфигурация реактивных элементов напоминает заглавную букву Т.
Фильтр, показанный на рис. 5.1, в, имеет два шунтирующих конденсатора. Конфигурация его реактивных элементов схожа с греческой буквой я, поэтому такой фильтр называют п- или П-образным фильтром.
Характеристики полосы прозрачности фильтра зависят от числа использованных полусекций, а также от других факторов, о которых будет упомянуто ниже. На рис. 5.1, а показана идеализированная частотная характеристика фильтра нижних частот. Частота среза f
Ср указывает граничную частоту, выше которой ослабляются сигналы, поступающие на фильтр нижних частот. Сигналы ниже f
Ср существенно не ослабляются.
Входной импеданс показанных на рис. 5.1 фильтров не зависит от приложенного напряжения и слабо зависит от числа соединенных друг с другом секций или полусекций [Эта зависимость тем слабее, чем больше n. Прим. ред.]. Предположим, например, что фильтр состоит из бесконечно большого числа соединенных друг с другом идентичных полусекций, показанных на рис. 5.1, а. При отсутствии резистивных компонентов ни катушка индуктивности, ни конденсатор не потребляют электрической энергии, и по мере заряда и разряда конденсаторов через последовательно включенные катушки индуктивности будет протекать ток. Если последовательно с входом фильтра включить амперметр, то можно определить величину входного тока фильтра. Если Е — величина приложенного к фильтру напряжения, то отношение E/I = Z
0
выражает измеряемый в омах входной импеданс фильтра. Входной импеданс Z
0
называется характеристическим
импедансом системы. Принято считать, что значение Z
0
не зависит ни от числа секций фильтра, ни от того, из каких показанных на рис. 5.1 секций он собран. Если фильтр, состоящий из одной или нескольких полусекций, нагружен на резистор сопротивлением R
n
= Z
0
, то ток в нагрузке соответствует току в бесконечно длинной линии; поэтому и в этом случае E/I=Z
0
. Характеристический импеданс (сопротивление) называют также
итеративным (повторяющимся) импедансом (сопротивлением), а иногда — волновым. Передача максимальной энергии сигнала имеет место тогда, когда нагрузочное сопротивление R
H
равно характеристическому со- противлению. Характеристический импеданс определяется следующим выражением:
(5.1)
Следовательно, для максимальной передачи энергии сигнала сопротивление R
H
нагрузки фильтра должно быть согласовано с характеристическим сопротивлением Z
0
фильтра.

Фильтры, показанные на рис. 5.1, характеризуются константой k. Константа k действительна для симметричной системы фильтров, в которой произведение последовательно и параллельно включенных реактивных сопротивлений остается постоянным для всех частот сигнала. Поэтому если последовательное и параллельное сопротивления в схеме на рис. 5.1, а обозначим соответственно Z
1
и Z
2
(любые реактивные и резистивные компоненты), то можно записать
Z
1
Z
2
= k
2
(5.2)
где k — постоянная, не зависящая от частоты.
Для фильтров нижних частот, показанных на рис. 5.1, полное значение индуктивности можно найти по формуле
(5.3)
где — нагрузочное сопротивление, Ом; fср — частота среза, Гц; L
1
— полная индуктивность секции, Г.
В схеме, показанной на рис. 5.1,6, индуктивность каждого из двух индуктивных элементов равна L
1
/2, поскольку элементы включены последовательно, а полная индуктивность есть L
1
.. Аналогично этому в схеме, приведенной на рис. 5.1, в, емкость каждого конденсатора равна C
1
/2, поскольку каждый шунтирующий конденсатор составляет половину полной емкости. Полная емкость для схем на рис. 5.1 определяется по формуле
(5.4)
где R
H
— нагрузочное сопротивление, Ом;
: fср — частота среза, Гц; Ci — полная емкость, Ф.
Частота среза для фильтра нижних частот с константой k определяется выражением
(5.5)
5.3. Фильтры нижних частот типа m
Если требуется более острый и более четко определенный срез частотной характеристики, который не может быть обеспечен фильтром типа k, то используется фильтр типа пг, производный от фильтра типа k.
Фильтр типа m является по существу фильтром типа k с добавлением еще одного элемента, включаемого последовательно или параллельно. Фильтр, показанный на рис. 5.2, а, содержит дополнительную индуктивность L
2
, чем он и отличается от полусекции исходного фильтра нижних частот, изображенного на рис. 5.1, а. Очевидно, что включенная параллельно цепь из последовательно соединенных L
2
и C
1
на опре- деленной частоте является резонансной и шунтирует выходные клеммы, так как импеданс цепи с последовательным резонансом на частоте резонанса минимальный [Фильтры типа m строят также, используя взаимную индукцию между индуктивными элементами фильтра типа k. Прим. ред.]. Фильтр типа М раз- рабатывают таким образом, чтобы на определенной частоте, находящейся за частотой среза f
СР
, обеспечивалось
(при чисто реактивных элементах) бесконечно большое ослабление сигнала. Импедансы элементов фильтра связаны между собой постоянной т, зависящей от отношения частоты среза f
Ср к частоте бесконечно большого ослабления f oo
,. Значение m находится между нулем и единицей и обычно составляет 0,6. Для более острого среза величину m выбирают вблизи нуля. Для фильтра
(5.6)
На рис. 5.2, б показан эффект воздействия секции типа т на сигналы на частотах f>f cp
. На рис. 5.2, в изображен Т-образный фильтр типа т, а на рис. 5.2, г — П-образный фильтр типа т. Следует обратить внимание на то, что дополнительным элементом в схеме на рис. 5.2, г является конденсатор, включенный параллельно индуктивности L
b
При таком включении элементов LI и С
2
на определенной частоте возникает параллельный резонанс, и высокий импеданс цепи LiC
2
на частоте резонанса приводит к сильному ослаблению сигнала.
Для фильтра нижних частот типа т, схема которого показана на рис. 5.2, а, параметры элементов фильтра находят из выражений где R
n
— сопротивление активной нагрузки.

Рис. 5.2. Фильтры нижних частот типа m и их частотная характер? нижних частот величина
m определяется выражением
Параметры дополнительных элементов фильтра, показанных на рис. 5.2, а и г, определяются из следующих формул:
5.4. Фильтры верхних частот типа k
Фильтр верхних частот пропускает высокочастотные и ослабляет низкочастотные составляющие сигнала.
Основная схема фильтра верхних частот, показанная на рис. 5.3, а, состоит из последовательно включенного конденсатора Ci и шунтирующей катушки индуктивности L
1
. При подаче на вход фильтра сигнала с составляющими различных частот для составляющих с постепенно увеличивающимися частотами емкостное сопротивление конденсатора Ci будет уменьшаться, и они проходят на выход фильтра. Для составляющих сигнала с постепенно понижающимися частотами емкостное сопротивление включенного последовательно конденсатора будет возрастать, поэтому составляющие будут ослабляться. Для низкочастотных составляющих сигнала шунтирующее индуктивное сопротивление L
1
мало, и они сильно ослабляются. Для высокочастотных составляющих шунтирующее воздействие индуктивности уменьшается, и они ослабляются меньше.
Для таких фильтров справедливы утверждения, сделанные в отношении постоянной k, импеданса Z
0
и условия согласования импеданса фильтра с нагрузкой для фильтра нижних частот. По сравнению с полусекцией Г-образного фильтра (рис. 5.3, а) Т-образный фильтр верхних частот (рис. 5.3,6) является более эффективным. На рис. 5.3,0 показан П-образный фильтр, а на рис. 5.3, г — частотная характеристика фильтра верхних частот. Частота среза на графике соответствует такой частоте f
cp
, ниже которой составляющие сигнала ослабляются. Этим частота среза f
Ср фильтра верхних частот отличается от частоты среза фильтра нижних частот, которая соответствует частоте, выше которой ослабляются составляющие сигналов. Как и в случае фильтра нижних частот, характеристическое сопротивление определяется выражением
(5.11)

Рис. 5.3. Фильтры верхних частот типа к и их частотная характеристика. Полную
индуктивность фильтра можно записать как
(5.12)
Полную емкость фильтра можно рассчитать по формуле
(5.13)
Частота среза фильтра верхних частот
(5.14)
5.5. Фильтры верхних частот типа т
При фильтрации высоких частот в случае необходимости получения более острого и четкого среза используют производные фильтры типа т, аналогичные рассмотренным НЧ-фильт-рам. Дополнительным элементом основной схемы фильтра верхних частот является конденсатор С
2
(рис. 5.4, а). Цепь последо- вательного резонанса, образованная L
1
и С
2
, производит сильное шунтирующее действие, приводящее к бесконечно большому затуханию в точке f = fоо, расположенной ниже частоты среза (рис. 5.4,6).
На рис. 5.4, в показан Т-образный фильтр типа т, в котором дополнительным элементом является С
2
. В П- образном фильтре (рис. 5.4, г) дополнительным элементом является индуктивность L
2
, шунтирующая C
1
и образующая цепь параллельного резонанса. При резонансе эта цепь имеет высокое последовательное сопротивление для составляющих сигнала с частотами ниже f ср
, т. е. она обеспечивает сильное ослабление этих составляющих.
Для фильтра верхних частот параметр т определяется следующим выражением:
(5.15)
Параметры элементов производного фильтра верхних частот типа т определяются из формул

Рис. 5.4. Фильтры верхних частот типа т и их частотная характеристика.
Дополнительный элемент С
2
схемы на рис. 5.4, а и дополнительный элемент L
2
схемы на рис. 5.4, г находят из следующих выражений:
5.6. Сбалансированные фильтры
Рис. 5.5. Балансировка фильтров.
Рассмотренные выше фильтры относятся к фильтрам так называемого несбалансированного типа, поскольку в них по одной из входных и выходных клемм фильтра, объединенных общей линией, находятся под
потенциалом земли. Это показано на рис. 5.5, а, где линия Т
2
П-образного фильтра нижних частот соединена с землей; при этом линия Т
1
несбалансирована относительно земли. На рис. 5.5, б изображен тот же фильтр в сба-
лансированном варианте: здесь величина рабочей индуктивности поделена между двумя линиями. Такая схема пригодна для включения между двухпроводными сбалансированными линиями передачи, сбалансированными генераторами, нагрузками и т. п.
На рис. 5.5, в показан фильтр нижних частот, образованный из двух Т-образных полусекций. Такая схема позволяет заземлить центральную часть составного фильтра, причем верхняя и нижняя линии фильтра оказываются сбалансированными по отношению к земле. Аналогичный прием использован в системе» изображенной на рис. 5.5, г, где П-образный фильтр верхних, частот типа k построен по сбалансированной схеме.
5.7. Полосовые фильтры
Полосовой фильтр пропускает сигналы, частоты которых лежат выше и ниже резонансной частоты в установленных пределах. Ширина полосы пропускания определяется избирательностью (добротностью Q) используемых схем. Поэтому составляющие сигнала с частотами выше и ниже полосы пропускания, будут ослабляться, или отфильтровываться, в то время как составляющие с частотами, находящимися в полосе пропускания,, проходят с умеренным затуханием.
Рис. 5.6. Полосовые фильтры и их частотная характеристика.
На рис. 5.6, а показана схема простейшего Г-образного полосового фильтра типа k. Предположим, что последовательная (Li и Ci) и параллельная (С
2
и L
2
) резонансные цепи настроены на резонансную частоту, в окрестности которой находится требуемая полоса пропускания. Тогда для составляющих сигнала на частоте резонанса и вблизи нее цепь последовательного резонанса L
1
и С
1
представляет низкий импеданс, поэтому такие составляющие легко проходят на выход фильтра. Для этих составляющих цепь параллельного резонанса
С
2
и L
2
имеет высокий импеданс, поэтому затухание, вносимое этой цепью, мало. Для составляющих сигналов с частотами выше или ниже полосы пропускания, определяемой резонансной частотой, последовательная резонансная цепь представляет высокий импеданс. Поэтому амплитуды таких составляющих на выходе очень малы, тем более, что составляющие шунтируются на выходе низким импедансом цепи параллельного резонанса
(эта цепь имеет высокий импеданс только для составляющих сигнала с частотами в пределах полосы пропускания).

На рис. 5.6,6 показана частотная характеристика полосового фильтра. Резонансная частота f р
для цепи последовательного или параллельного резонанса определяется выражением где f p
— резонансная частота, Гц; L
1
, L
2
— индуктивность, Г; С
1
> С
2
— емкость, Ф.
За ширину полосы пропускания фильтра принимают разность таких частот f
2
— f
1
(рис. 5.6,6), которым соответствует величина амплитуды на выходе фильтра, равная 0,707 максимального значения амплитуды при частоте f=f
Р
Добротность Q фильтра выражается отношением резонансной частоты к ширине полосы пропускания фильтра (рис. 5.6,6):
(5.21)
Поскольку добротность контура определяется его активными сопротивлениями, то для контура с последовательным резонансом
(5.22)
где R — эквивалентное последовательное активное сопротивление; при этом учитываются как активное сопротивление катушки индуктивности (предполагается, что активное сопротивление конденсатора пренебрежимо мало), так и другие активные сопротивления схемы. Для контура с параллельным резонансом добротность находят по формуле где R — эквивалентное шунтирующее контур активное сопротивление потерь. Величины отдельных компонентов полосовых фильтров, показанных на рис. 5.6, можно вычислить по формулам
На рис. 5.6, в изображен П-образный полосовой фильтр, на рис. 5.6, г — Т-образный фильтр.
5.8. Заграждающие фильтры
Заграждающий фильтр пропускает сигналы, частоты которых находятся выше и ниже установленной полосы задерживания. Поэтому фильтр такого типа задерживает составляющие сигнала в окрестности некоторой частоты. Так же, как и в полосовом фильтре, ширина полосы задерживания заграждающего фильтра определяется добротностью Q используемой цепи. Соображения, касающиеся добротности и частоты резонанса полосового фильтра, а также приведенные в разд. 5.7 формулы для этих величин справедливы и для заграждающего фильтра.
На рис. 5.7, а показана основная схема Г-образного заграждающего фильтра типа k. Предположим, что цепи параллельного и последовательного резонансов настроены в резонанс на центральную частоту f р
полосы сигналов, которые необходимо задержать. В таком случае цепь параллельного резонанса L
1
C
1
создает высокий импеданс для сигналов на резонансной частоте и поэтому ослабляет их. В то же время прошедшие через парал- лельный контур сигналы шунтируются на выходе низким импедансом цепи последовательного резонанса L
2
C
2
Для составляющих же сигнала с частотами выше и ниже резонансной частоты контур параллельного резонанса
L
1
С
1
имеет низкий импеданс и незначительно ослабляет эти сигналы.
В то же время составляющие сигнала, частоты которых отличаются от резонансной для цепи L
2
C
2
, незначительно ослабляются этой цепью из-за большой величины импеданса этой цепи.
На рис. 5.7,6 показана частотная характеристика заграждающего фильтра. Частота fi соответствует нижней частоте полосы задерживания, а частота fz — верхней. Эта характеристика представляет собой перевернутую кривую избирательности, и ширина полосы задерживания определяется здесь аналогично тому, как это было показано для полосы пропускания полосового фильтра.

Рис. 5.7. Заграждающие фильтры и их частотная характеристика.
На рис. 5.7, в изображена схема П-образного заграждающего фильтра, а на рис. 5.7, г — схема Т-образного фильтра.
Величины элементов заграждающего фильтра находят по формулам
В этих формулах R
H
, как и раньше, является активным сопротивлением нагрузочного элемента заграждающего фильтра.
5.9. Аттенюаторы (ослабители)
Терминами «аттенюатор» и «ослабитель» называют резистив-ные схемы, предназначенные для выполнения одной или обеих из следующих функций: согласование различных импедансов и понижение уровня сигнала.
Термины «аттенюатор» и «ослабитель» используются как синонимы.
Иногда аттенюатор применяют для уменьшения амплитуды сигнала без согласования импедансов соответствующих схем. В других случаях аттенюатор выполняет обе функции. При согласовании импедансов не обязательно требуется ослабление сигнала. Однако, поскольку в качестве аттенюаторов используются резистивные цепи, с некоторым понижением уровня сигнала приходится мириться. Многие устройства нормально работают при амплитудах сигналов, меньших, чем максимально достижимые амплитуды сигналов, вырабатываемых для работы с этими устройствами. Поэтому уровень вырабатываемых сигналов можно регулировать так, чтобы скомпенсировать понижение амплитуды сигнала, вызванное использованием ослабителей для согласования импедансов.
5.10. Типы переменных аттенюаторов

Обычный регулятор уровня громкости на одном потенциометре является своего рода аттенюатором. Он обладает способностью понижать амплитуду сигнала относительно того максимального уровня, который система в состоянии воспроизвести. Однако регулятор уровня на одном потенциометре не сохраняет постоянным выходной импеданс источника. Из схемы на рис. 5,8, а следует, что при установке движка потенциометра в среднее положение входная цепь транзистора шунтирует лишь нижнюю часть потенциометра.
При максимальном же уровне громкости, когда движок потенциометра занимает верхнее положение, входная цепь транзистора находится под наивысшим потенциалом потенциометра. При нулевом уровне громкости, когда движок потенциометра имеет потенциал, равный потенциалу земли, вход транзистора также находится под потенциалом земли.
Рис. 5.8. Г-образный аттенюатор.
Более удовлетворительные результаты получаются при использовании Г-образных аттенюаторов, символическое обозначение которых показано на рис. 5.8, б. Два переменных резистора соединяют таким образом, что они функционируют, как показано на рис. 5.8, в. Предположим, что номинал каждого из двух переменных резисторов составляет 10 кОм. Для передачи максимальной энергии источника сигнала на базу транзисторного усилителя движки переменных резисторов должны находиться в положении, показанном на рис. 5.8, в. При этом источник входного сигнала нагружен на сопротивление 10 кОм, шунтированное входным импедансом транзистора. С другой стороны, входная базовая цепь транзистора также шунтируется сопротивлением 10 кОм переменного резистора, а также испытывает шунтирующее действие самого источника входного сигнала.
Когда движки обоих переменных резисторов находятся в среднем положении (рис. 5.8, г), то как источник входного сигнала, так и вход транзистора шунтированы сопротивлением 10 кОм (вход транзистора шунтирован половиной сопротивления резистора R
2
, соединенного последовательно с половиной сопротивления резистора
R
1
, поэтому общее сопротивление составляет 10 кОм). В этом случае выходное сопротивление преобразователя между преобразователем входного сигнала и входом транзистора равно 10 кОм. Для положения, соответствую- щего минимальному, или нулевому, уровню сигнала (рис. 5.8, д), источник шунтируется полным сопротивлением резистора Ri, а транзистор — сопротивлением резистора R
2
, равным 10 кОм. Поэтому при всех установках движков переменных резисторов выходное сопротивление преобразователя продолжает оставаться равным 10 кОм [Эти рассуждения справедливы при условии, что внутреннее сопротивление источника входных сигналов Rн>R
1
.Прим. ред.].
Можно применять также различные Т-образные аттенюаторы. На рис. 5.9, а показано их символическое обозначение. Три переменных резистора соединяют таким образом, как показано на рис. 5.9,6 — г. В схеме на рис. 5.9,6, соответствующей максимальному уровню сигнала, источник входного сигнала непосредственно связан с входом транзистора. При этом как источник, так и транзистор шунтируются резистором R
3
. На рис.
5.9,в движки переменных резисторов находятся в средних положениях. В этом случае источник входного сигнала также шунтируется сопротивлением 10 кОм, поскольку здесь используются половина резистора R
1
и половина резистора R
3
. Вход транзистора шунтирован сопротивлением того же значения, так как он соединен с землей через половину резистора R
2
и половину резистора R
3
. При установке движков в средние положения между источником входного сигнала и базой транзистора включено последовательное сопротивление 10 кОм.

Для установки минимального уровня громкости движки переменных резисторов должны находиться в положениях, показанных на рис. 5.9, г. В этом случае между источником входного сигнала и базой транзистора включено сопротивление 20 кОм, источник входного сигнала шунтирован резистором R
1
, а база транзистора — резистором R
2
; поэтому шунтирующее сопротивление источника и входа транзистора продолжает оставаться равным 10 кОм.
Рис. 5.9. Т-образный аттенюатор.
Рис. 5.10. Согласование импедансов при помощи Г-образного аттенюатора.
5.11. Типы постоянных аттенюаторов
В постоянных, или фиксированных, аттенюаторах используются постоянные (нерегулируемые) резисторы.
Такие аттенюаторы бывают двух типов: асимметричные и симметричные. У асимметричных постоянных аттенюаторов импедансы на входе и выходе разной величины. Поэтому их используют для целей согласования
импедансов, а также для создания некоторого ослабления сигналов. Симметричные постоянные аттенюаторы имеют одинаковые импедансы на входе и выходе и включаются между двумя устройствами с равными импедансами. Асимметричный и симметричный аттенюаторы могут быть несбалансированными (одна линия заземлена, а другая — нет) или сбалансированными (обе линии не заземлены) (см. рис. 5.5 и относящийся к нему текст).
5.12. Г-образный постоянный аттенюатор
На рис. 5.10, а показана исходная схема Г-образного постоянного аттенюатора. Такой асимметричный аттенюатор используется для согласования импеданса источника сигналов с импедансом нагрузочного элемента. Аттенюатор этого типа известен также как аттенюатор с минимальными потерями, поскольку он при выполнении функции согласования импедансов вносит минимум потерь.
Рис. 5.11. Сбалансированный аттенюатор с минимальными потерями и многосекционный
аттенюатор.
При соответствующем выборе номиналов резисторов Ri и R2 выходной импеданс Z
1
будет согласован с импедансом подключаемой к нему цепи. Аналогично входной импеданс Z
2
окажется согласованным с эквивалентным сопротивлением питающего источника. Предположим, что источник с выходным импедансом
Z
1
= 50 Ом должен быть согласован с устройством, импеданс которого Z
2
= 300 Ом. Приме-рные номиналы резисторов R-, и R
2 должны быть такими, как указано на рис. 5.10,6. При таком условии источник с выходным импедансом Zi = 50 Ом «питает» шунтирующий резистор Ri = 5Q Ом, параллельно которому включены последовательно соединенные R
2
= 27Q Ом и Z
2
= 300 Ом.
По закону Кирхгофа сопротивление R
1
|| (R
2
+ Z
2
)=Z
1
= 50 Ом, благодаря чему обеспечивается удовлетворительное согласование импеданса Z
1
с сопротивлением подключаемой цепи. В то же время относительно входного импеданса Z
2
= 300 Ом включена цепь, состоящая из резистора R
2
= 270 Ом, последовательно с которым соединена параллельная ветвь из сопротивления Zi = 50 Ом и резистора Ri = 56 Ом
(рис. 5.10, в). Общее сопротивление этой цепи составит приблизительно 295 Ом, что достаточно близко к значению Z
2
= 300 Ом для соответствующего согласования импедансов (при использовании резисторов стан- дартных номиналов). Полная схема согласования импедансов показана на рис. 5.10, г.
Между резисторами аттенюатора и импедансами Zi и Z
2 устройств, изображенными на рис. 5.10, выполняются соотношения
Если Zi меньше Z
2
, то из (5.32) и (5.33) получаем

Если величина R
1
известна, то легко находится R
2
:
Если же Ri и R
2
неизвестны, их значения можно найти из формул (5.32) и (5.33).
На практике в качестве Ri и R
2
используются резисторы стандартных номиналов, наиболее близких к расчетным значениям.
На рис. 5.11 изображена сбалансированная схема Г-образно-го аттенюатора. Схему такой конфигурации часто называют U-образным аттенюатором. В этой схеме номинал каждого последовательного резистора составляет половину значения резистора в схеме на рис. 5.10, а. Поэтому в качестве сбалансированного варианта схемы, изображенной на рис. 5.10, г, используется схема, показанная на рис. 5.11,6. Если аттенюаторы соединены последовательно (рис. 5.11, в), то полученную систему часто называют многосекционным
(многозвенным) аттенюатором. Затухание, обеспечиваемое аттенюатором, увеличивается пропорционально числу используемых полусекций.
5.13. Т- и Н-образные аттенюаторы
На рис. 5.12, а показан Т-образный аттенюатор. Это симметричный аттенюатор, в котором импеданс устройства на входе совпадает с импедансом устройства на выходе. Единственное назначение такого аттенюатора — ослабление сигнала. Поскольку согласования импедансов не требуется, номиналы резисторов
Ri идентичны, а номиналы Ri и R
2
выбирают из условия обеспечения требуемой степени ослабления.
Аттенюатор, показанный на рис. 5,12, а, является несбалансированным, a сбалансированный вариант Т- образного аттенюатора приведен на рис. 5.12,6. В сбалансированном аттенюаторе вместо резисторов R
1
используются резисторы R
1
/2.
Рис. 5.12. Симметричные Т-, Н-, П- и 0-образные аттенюаторы.
Для нахождения величин Ri и R
2
следует соотнести их с требуемой степенью ослабления напряжения или тока сигнала. Поэтому уравнения, используемые для определения R
1
и R
2
, включают отношение напряжений v
между входом и выходом аттенюатора, выражающее требуемое ослабление. Коэффициент v может быть также получен на основе отношения токов сигналов.
Если сигнал с амплитудой напряжения 100 В необходимо ослабить для получения выходного сигнала напряжением 10 В, то отношение напряжений v будет равно 10. В этом случае для Т-образного аттенюатора, показанного на рис. 5.12, справедливы следующие соотношения:
5.14. П- и О-образные аттенюаторы

На рис. 5.12, в показан П-образный симметричный несбалансированный аттенюатор. Сбалансированный вариант аттенюатора изображен на рис. 5.12, г; поскольку полученная конфигурация схожа с буквой О, такой аттенюатор часто называют О-образным. Так как импедансы на входе и выходе аттенюатора одинаковы, величины резисторов служат не для согласования импедансов, а для обеспечения требуемой степени ос- лабления сигналов. Как и в случае Т-образных аттенюаторов, уравнения для нахождения значений резисторов выражаются через величину v требуемого отношения напряжений:
5.15. Мостовые Т- и Н-образные аттенюаторы
Иногда параллельно последовательным резисторам Т- и Н-образных аттенюаторов включают дополнительный резистор; в этом случае образуется мостовой аттенюатор. Схемы мостовых Т- и Н-образных аттенюаторов показаны соответственно на рис. 5.13, а и б. В этих схемах значения R
1
и R
2
равны импедансу Z:
R
1
= R
2
= Z.
(5.41)
Вследствие выбора значений R
1
и R
2
равными омической величине импеданса Z необходимо рассчитывать лишь номиналы резисторов R
3
и R
4
. Соответствующие формулы для их расчета имеют вид где смысл и тот же, что и в разд. 5.13.
Рис. 5.13. Мостовые Т- и Н-образные аттенюаторы.
5.16. Фильтр частичного подавления одной боковой полосы
В телевидении для воспроизведения мелких деталей используется полоса модулирующих сигналов до 4
МГц. При амплитудной модуляции каждому модулирующему сигналу соответствуют две боковые полосы, причем эти полосы отстоят от несущей на частоту, равную частоте модулирующего сигнала. Поэтому если телевизионную несущую модулирует сигнал частотой 4 МГц, одна боковая полоса будет находиться на 4 МГц выше, а другая- — на 4 МГц ниже несущей частоты. Требуемая общая полоса составит 8 МГц; кроме того, необходима некоторая дополнительная полоса для размещения ЧМ-несущей. Такое использование спектра нерационально; поэтому в передатчике подавляется большая часть нижней боковой полосы, так что общая полоса излучения телевизионной станции имеет вид, показанный на рис. 5.14, а.
Поскольку нежелательно обострять срез частотной характеристики в области НЧ-сигналов, что привело бы к необходимости использования дополнительной схемы и критичности получаемой при этом характеристики, часть нижней боковой полосы остается неподавленной и называется частично подавленной. Поэтому несущая изображения отстоит на 1,25 МГц относительно НЧ-границы отведенного спектра, а несущая звукового сопровождения размещена на 0,25 МГц ниже верхней границы отведенного для данной станции спектра частот.
Как будет показано в разд. 9.12, фильтр подавления боковой полосы устанавливают на выходе промодулированной несущей изображения перед антенной системой. Схема такого фильтра боковой полосы представлена на рис. 5.14,6. Фильтр состоит из фильтров верхних и нижних частот, описанных ранее в этой главе (см. также разд. 15.8 и рис. 15.9).

Рис. 5.14. Полоса частот телевизионной станции и фильтр частичного подавления одной
боковой полосы.
В фильтре частичного подавления боковой полосы, изображенном на рис. 5.14, для нежелательных сигналов нижней боковой полосы катушки индуктивности L
4
и L
5
представляют малое реактивное сопротивление. Эти сигналы шунтируются цепями последовательного резонанса С
6
и L
6
, а также С? и L
7
. К фильтру нижних частот подключена концевая корректирующая секция C
5
R
2
, что необходимо, поскольку такие фильтры часто составляют из секций линий из коаксиального кабеля и этот резистор сводит к минимуму отражения в кабеле.
Для полезных сигналов верхней боковой полосы реактивные сопротивления конденсаторов Ci и С
2
малы, так что сигналы поступают на фильтр верхних частот. Конденсатор С
3
и индуктивность
LI
,
а также конденсатор
С
4
и индуктивность L
2
имеют низкое шунтирующее полное сопротивление для сигналов, частоты которых примерно на 1,25 МГц ниже несущей частоты изображения. Поэтому такие сигналы ослабляются. Совместное действие фильтра верхних частот с фильтром нижних частот приводит к подавлению и ослаблению соответствующей части нижней боковой полосы сигнала (рис. 5.14, а). Для сведения к минимуму отражений секция фильтра верхних частот типа m нагружена на резистор R
1
.
1   2   3   4   5   6   7   8   9   10   ...   18


написать администратору сайта