СРОП №1. Проводящий механизм биологических мембран. Меббм КазастанРесей nseoKazakhRussian Медициналы Университеті
Скачать 0.56 Mb.
|
МЕББМ «Казақстан-Ресей NSEO«Kazakh-Russian Медициналық Университеті» Medical University» СРОП №1. Проводящий механизм биологических мембран Подготовила:Клышпаев И. Курс:1 Факультет:Общая медицина Группа:322A Проверила: Almaty,2022 МЕББМ «Казақстан-Ресей НУО «Казахстанско-Российский Медициналық Университеті» Медицинский Университет» Введение Биологические мембраны- общее название функционально активных поверхностных структур, ограничивающих клетки (клеточные, или плазматические мембраны) и внутриклеточные органеллы (мембраны митохондрий, ядер, лизосом, эндоплазматического ретикулума и др.). Они содержат в своем составе липиды, белки,гетерогенные молекулы (гликопротеины,гликолипиды)и в зависимости от выполняемой функции много- численные минорные компоненты: коферменты, нуклеиновые кислоты, антиоксиданты, каротиноиды, неорганические ионы и т. п. Согласованное функционирование мембранных систем – рецепторов, ферментов, транспортных механизмов - помогает поддерживать гомеостаз клетки и в то же время быстро реагировать на изменения внешней среды. К основным функциям биологических мембран можно отнести: · отделение клетки от окружающей среды и формирование внутриклеточных компартментов (отсеков); · контроль и регулирование транспорта огромного многообразия веществ через мембраны; · участие в обеспечении межклеточных взаимодействий, передаче внутрь клетки сигналов; · преобразование энергии пищевых органических веществ в энергию химических связей молекул АТФ. Молекулярная организация плазматической (клеточной) мембраны у всех клеток примерно одинакова: она состоит из двух слоев липидных молекул с множеством включенных в нее специфических белков. Одни мембранные белки обладают ферментативной активностью, тогда как другие связывают питательные вещества из окружающей среды и обеспечивают их перенос в клетку через мембраны. Мембранные белки различают по характеру связи с мембранными структурами. Одни белки, называемые внешними или периферическими, непрочно связаны с поверхностью мембраны, другие, называемые внутренними или интегральными, погружены внутрь мембраны. Периферические белки легко экстрагируются, тогда как интегральные белки могут быть выделены только при помощи детергенов или органических растворителей. Мембранный транспорт – транспорт веществ сквозь клеточную мембрану в клетку или из клетки, осуществляемый с помощью различных механизмов – простой диффузии, облегченной диффузии и активного транспорта. Важнейшее свойство биологической мембраны состоит в ее способности пропускать в клетку и из нее различные вещества. Это имеет большое значение для саморегуляции и поддержания постоянного состава клетки. Такая функция клеточной мембраны выполняется благодаря избирательной проницаемости, т.е. способностью пропускать одни вещества и не пропускать другие. Легче всего проходят через липидный бислой неполярные молекулы с малой молекулярной массой (кислород, азот, бензол). Достаточно быстро проникают сквозь липидный бислой такие мелкие полярные молекулы, как углекислый газ, оксид азота, вода, мочевина. С заметной скоростью проходят через липидный бислой этанол и глицерин, а также стероиды и тиреоидные гормоны. Для более крупных полярных молекул (глюкоза, аминокислоты), а также для ионов липидный бислой практически непроницаем, так как его внутрення часть гидрофобна. Так, для воды коэффициент проницаемости (см/с) составляет около 10-2, для глицерина – 10-5, для глюкозы – 10-7, а для одновалентных ионов – меньше 10-10. Перенос крупных полярных молекул и ионов происходит благодаря белкам- каналам или белкам-переносчикам. Так, в мембранах клеток существуют каналы для ионов натрия, калия и хлора, в мембранах многих клеток – водные каналы аквапорины, а также белки-переносчики для 4 глюкозы, разных групп аминокислот и многих ионов. Активный и пассивный транспорт. Мембраны формируют структуру клетки и осуществляют ее функции. Нарушение функций клеточной и внутриклеточной мембран лежит в основе необратимого повреждения клеток и, как следствие, развитие тяжелых заболеваний сердечно-сосудистой, нервной, эндокринной системы. 2. Общие представления о проницаемости. Xарактеристика мембран, стенок сосудов и эпителиальных клеток, отражающая способность проводить химические вещества; различают активную (активный транспорт веществ) и пассивную П. (фагоцитоз и пиноцитоз ); пассивная и (в ряде случаев) активная П. (крупных молекул) обеспечиваются мембранными порами, П. для низкомолекулярных веществ (например, ионов) обеспечивается специфическими мембранными структурами с участием молекул-переносчиков. 3. Перенос молекул через мембрану. Так как внутренняя часть липидного слоя гидрофобна, он представляет собой практически непроницаемый барьер для большинства полярных молекул. Вследствие наличия этого барьера, предотвращается утечка содержимого клеток, однако из-за этого клетка была вынуждена создать специальные механизмы для транспорта растворимых в воде веществ через мембрану. Перенос малых водорастворимых молекул осуществляется при помощи специальных транспортных белков. Это особые трансмембранные белки, каждый из которых отвечает за транспорт определенных молекул или групп родственных молекул. В клетках существуют также механизмы переноса через мембрану макромолекул (белков) и даже крупных частиц. Процесс поглощения макромолекул клеткой называется эндоцитозом. В общих чертах механизм его протекания таков: локальные участки плазматической мембраны впячиваются и замыкаются, образуя эндоцитозный пузырек, затем поглощенная частица обычно попадает в лизосомы и подвергается деградации. 3.1 Диффузия (лат. diffusio — распространение, растекание, рассеивание) — процесс переноса материи или энергии из области с высокой концентрацией в область с низкой концентрацией (против градиента концентрации). Самым известным примером диффузии является перемешивание газов или жидкостей (если в воду капнуть чернил, то жидкость через некоторое время станет равномерно окрашенной). Другой пример связан с твёрдым телом: если один конец стержня нагреть или электрически зарядить, распространяется тепло (или соответственно электрический ток) от горячей (заряженной) части к холодной (незаряженной) части. В случае металлического стержня тепловая диффузия развивается быстро, а ток протекает почти мгновенно. Если стержень изготовлен из синтетического материала, тепловая диффузия протекает медленно, а диффузия электрически заряженных частиц — очень медленно. Диффузия молекул протекает в общем ещё медленнее. Например, если кусочек сахара опустить на дно стакана с водой и воду не перемешивать, то пройдёт несколько недель, прежде чем раствор станет однородным. Ещё медленнее происходит диффузия одного твёрдого вещества в другое. Например, если медь покрыть золотом, то будет происходить диффузия золота в медь, но при нормальных условиях (комнатная температура и атмосферное давление) золотосодержащий слой достигнет толщины в несколько микрометров только через несколько тысяч лет. Все виды диффузии подчиняются одинаковым законам. Скорость диффузии пропорциональна площади поперечного сечения образца, а также разности концентраций, температур или зарядов (в случае относительно небольших величин этих параметров). Так, тепло будет в четыре раза быстрее распространяться через стержень диаметром в два сантиметра, чем через стержень диаметром в один сантиметр. Это тепло будет распространяться быстрее, если перепад температур на одном сантиметре будет 10 °C вместо 5 °C. Скорость диффузии пропорциональна также параметру, характеризующему конкретный материал. В случае тепловой диффузии этот параметр называется теплопроводность, в случае потока электрических зарядов — электропроводность. Количество вещества, которое диффундирует в течение определённого времени, и расстояние, проходимое диффундирующим веществом, пропорциональны квадратному корню времени диффузии. Диффузия представляет собой процесс на молекулярном уровне и определяется случайным характером движения отдельных молекул. Скорость диффузии в связи с этим пропорциональна средней скорости молекул. В случае газов средняя скорость малых молекул больше, а именно она обратно пропорциональна квадратному корню из массы молекулы и растёт с повышением температуры. Диффузионные процессы в твёрдых телах при высоких температурах часто находят практическое применение. Например, в определённых типах электронно- лучевых трубок (ЭЛТ) применяется металлический торий, продиффундировавший через металлический вольфрам при 2000 °C. Заключение Любая молекула может пройти через липидный бислой, однако скорость пассивной диффузии веществ, т.е. перехода вещества из области с большей концентрацией в область с меньшей, может сильно отличаться. Для некоторых молекул это занимает столь длительное время, что можно говорить об их практической непроницаемости для липидного бислоя мембраны. Скорость диффузии веществ через мембрану зависит главным образом от размера молекул и их относительной растворимости в жирах. Легче всего проходят простой диффузией через липидную мембрану малые неполярные молекулы, такие как О2, стероиды, тиреоидные гормоны, а также жирные кислоты. Малые полярные незаряженные молекулы - СО2, NH3, Н2О, этанол, мочевина - также диффундируют с достаточно большой скоростью. Диффузия глицерола идёт значительно медленнее, а глюкоза практически не способна самостоятельно пройти через мембрану. Для всех заряженных молекул, независимо от размера, липидная мембрана непроницаема. Литература Строение и функции биологических мембран (poznayka.org) биологический механизм - Проводящий механизм биологических мембран (topuch.ru) Механизмы проницаемости биологических мембран - Закон (doklad.ru) |