Главная страница
Навигация по странице:

  • Стабильность липидного слоя и электричес­ кий пробой мембраны.

  • Электрический пробой как универсальный механизм нарушения барьерной функции мем­бран.

  • Нарушение структурных (матричных) свойств липидного бислоя.

  • 3.2. ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

  • 3.2.1. Общий адаптационный синдром (стресс)

  • Местные и общие реакции организма на повреждение


    Скачать 451.5 Kb.
    НазваниеМестные и общие реакции организма на повреждение
    Дата19.10.2018
    Размер451.5 Kb.
    Формат файлаdoc
    Имя файлаPovrezhdenie_kletki.doc
    ТипГлава
    #53921
    страница4 из 4
    1   2   3   4
    Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    85

    совокупности называемые антиоксидантами (табл. 10).

    3.1.8. Стабильность липидного слоя мембран и явление электрического пробоя

    Стабильность липидного слоя и электричес­кий пробой мембраны. В отличие от белков и нуклеиновых кислот, которые в клетке собира­ются каждый по своему чертежу сложнейшими молекулярными роботами, липидный слой мем­браны обладает способностью собираться сам по себе из молекул фосфолипидов и холестерина, если только они содержатся в водном растворе в достаточной концентрации. Это связано с осо­бым свойством молекул липидов, входящих в состав мембран, которое принято называть ам-фифильностью, т. е. сродством одновременно к воде (гидрофильность) и к неводным средам, та­ким как растительное масло или жидкий пара­фин (гидрофобность). Молекула фосфолипида (основной липид клеточной и внутриклеточных мембран) имеет форму сплющенного цилиндра (рис. 13, А), один (меньший) конец которого хорошо растворяется в воде («полярная голова»), а другой - в воде не растворяется («жирный хвост») (рис. 13, Б). В водной среде такие моле­кулы самособираются в липидный бислой (рис. 13, В), который сам на себя замыкается, обра­зуя везикулы - липосомы (рис. 13, Г).

    Под влиянием тепловых движений молекул в липидном слое могут образоваться дефекты, которые приводят к образованию заполненных водой трещин и щелей (назовем их «порами»). Через такие дефекты могут проходить водора­створимые молекулы и ионы. Однако их появ­ление крайне невыгодно с энергетической точки зрения, поскольку при этом граница раздела липид - вода сильно увеличивается, а это требу­ет затраты работы на преодоление силы поверх­ностного натяжения. С ростом радиуса поры энер­гия системы растет пропорционально радиусу в соответствии с уравнением:

    АЕ = nrlo,

    где г - радиус поры; Z ■ толщина мембраны; а -энергия образования границы раздела площадью 1м2 (в системе СИ).

    При наличии мембранного потенциала (т. е. разности потенциалов между водными фазами

    86

    по сторонам мембраны), который обозначается как фт, энергия образования поры снижается. Как показывает теория, в этом случае энергия системы изменяется с ростом поры по уравне­нию:

    АЕ = nrlo ■ кг2еоФ*т (s„ - ej/ 21,

    где е0 - диэлектрическая постоянная, ец , ет- ди­электрическая проницаемость для воды и липид­ного слоя мембран соответственно; <р/( - мембран­ный потенциал.

    Изменение энергии поры с ростом ее радиуса при трех разных мембранных потенциалах по­казано на рис. 14, В. Видно, что с ростом радиу­са энергия системы сначала растет, а затем на­чинает уменьшаться. Это означает, что после преодоления некоторого энергетического барье­ра рост поры будет происходить самопроизволь­но, пока мембрана вообще не разрушится. Вели­чина барьера снижается при увеличении мемб-




    «Полярная голова»





    Липидный бислой





    «Жирный хвост»

    г Липосома

    Рис. 13. Самосборка фосфолипидов в бислой

    Часть I. ОБЩАЯ НОЗОЛОГИЯ

    рвнного потенциала. При небольших потенциа­лах, существующих в живой клетке (70 мВ на щдаоплазматической мембране и 175 мВ на внут­ренней мембране митохондрий), этого не проис-ходит, потому что барьер достаточно высок.

    С ростом потенциала может наступить момент, когда в мембране начнут формироваться и расти ■оры и она будет разрушена. Такое явление но­ет название электрического пробоя мембраны.



    О


    Образование водной поры

    Поверхность поры равна 2кН






    <

    с

    о I-


    Радиус поры, мкм

    0 40 80 120

    _

    Рис. 14. Электрический пробой мембран: А - появле­ние в липидном бислое мембраны поры, заполнен­ной водой; В - размер внутренней поверхности поры пропорционален ее радиусу; В - энергия мембраны с

    порой в зависимости от ее радиуса. Величина потенциального барьера при росте поры уменьшает­ся при увеличении потенциала на мембране; Г - возрастание тока в зависимости от потенциала пробоя

    Величина потенциала, при котором начинается электрический пробой, называется потенциалом пробоя и обычно обозначается как U* или ф*. Величина потенциала пробоя, несколько разли­чающаяся для мембран с разным составом бел­ков и липидов, может служить количественной мерой электрической стабильности мембраны. Чем стабильнее мембрана, тем выше потенциал, который ее «пробивает» (т. е. ф*) .

    Электрическая прочность различных мем­бранных структур. Явление электрического про­боя мембран изучалось многими авторами на искусственных мембранах и отдельных клетках. Мембраны обладают определенным сопротивле­нием R электрическому току I, которое при не­большой разности потенциалов ф между двумя сторонами мембраны является постоянной вели­чиной. Иными словами, для мембраны соблюда­ется закон Ома:

    I=Ф/Л.

    Это означает, что зависимость между напря­жением на мембране ф и током через мембрану I - линейная. Однако такая зависимость сохраня­ется при сравнительно небольших величинах ф: обычно не выше 200-300 мВ. При определенной разности потенциалов на мембране (потенциале пробоя ф*) происходит резкое возрастание тока (рис. 14, Г). При постоянном мембранном по­тенциале, если он превышает критическое зна­чение, ток самопроизвольно нарастает во време­ни до полного разрушения мембраны.

    На рис. 14 представлены результаты опыта на бислойных липидных мембранах. Аналогич­ные опыты были проведены на везикулярных мембранных структурах: фосфолипидных вези­кулах - липосомах, изолированных митохондри­ях и эритроцитах. В случае липосом и эритро­цитов потенциал на мембране создавался за счет разности концентраций проникающих ионов по сторонам мембраны, в случае митохондрий - за счет энергии окисления субстратов. Измерение мембранного потенциала осуществлялось различ­ными способами, например в случае митохонд­рий, - с помощью потенциалчувствительного флуоресцентного зонда. Явление пробоя мемб­ран наблюдалось во всех случаях. В табл. 11 приведены величины потенциалов пробоя мемб­ран всех этих объектов. Разумеется, потенциал пробоя во всех случаях выше потенциала, суще­ствующего на мембранах в живой клетке: иначе


    Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    87

    Таблица 11 Электрические потенциалы (мВ) на мембранах клеток и потенциалы пробоя модельных и биологических мембран (A3. Путвинский, Т.В. Пучкова, ОМ. Париев, Ю.А. Владимиров)

    Объект

    Разность потенциалов на мембране в клетках

    Потенциал пробоя

    Липидный бислой

    -

    130-170 (БЛМ)

    Клеточная мембрана

    70 (нервные и мышечные клетки)

    90-100 (эритроциты)

    Внутренняя мембрана митохондрий

    175

    (митохондрии печени в присутствии

    субстратов и кислорода)

    200

    все мембраны пробились бы своим собственным потенциалом и клетка не могла бы существовать. Однако запас электрической прочности невелик: всего 20-30 мВ. Это означает, что при снижении прочности мембраны может произойти ее «са­мопробой».

    Электрический пробой как универсальный механизм нарушения барьерной функции мем­бран. Чрезвычайно важно, что электрическая прочность мембран, мерой которой служит по­тенциал пробоя, снижается под действием по­вреждающих факторов. Как уже говорилось, основными причинами нарушения барьерных свойств мембран при патологии являются: пе-рекисное окисление липидов, действие мемб­ранных фосфолипаз, механическое растяже­ние мембран или адсорбция на них некоторых белков. Изучение влияния этих действующих факторов на электрическую прочность мембран показало, что все они снижают потенциал про­боя мембран (рис. 15).

    При повреждении мембранных структур про­исходит снижение потенциала пробоя <р* и мо­жет сложиться ситуация <р* < ф, когда мембрана будет «пробиваться» собственным мембранным потенциалом. К чему это приводит в условиях живой клетки? Предположим, клетку облучают

    ультрафиолетовыми лучами, под влиянием ко­торых в липидных мембранах активируется пе-рекисное окисление. В неповрежденных мито­хондриях потенциал на мембране равен 175 мВ, а потенциал пробоя составляет около 200 мВ (см. табл. 11). В процессе активации перекисного окисления липидов потенциал пробоя начинает постепенно снижаться, и как только он достига­ет значения 175 мВ, мембрана митохондрий «про­бивается» собственным мембранным потенциа­лом. То же происходит и при активации фосфо­липаз: снижение потенциала пробоя до величи­ны, равной существующему на мембране потен­циалу, приводит к электрическому пробою мем­браны и потере ею барьерных свойств. В услови­ях эксперимента на эритроцитах и митохондри­ях было показано, что осмотическое растяжение мембраны и добавление чужеродных белков, так же как и действие перекисного окисления и фос-фолипазы, снижают потенциал пробоя мембран настолько, что они начинают «пробиваться» соб­ственным мембранным потенциалом.

    Естествен вопрос, почему такие, казалось бы, разные воздействия, как перекисное окисление липидов, ферментативный гидролиз фосфолипид-ных молекул, механическое растяжение мемб­раны или адсорбция полиэлектролитов, приво-


    Рис. 15. Снижение электрической прочности БЛМ при действии ультра­фиолетового излучения (УФ), фосфо-липазы А2, пептидов, при растяже­нии мембраны, вызванном разностью гидростатического давления (ДР)

    Часть I. ОБЩАЯ НОЗОЛОГИЯ

    дят к одному и тому же результату - снижению электрической прочности (т.е. уменьшению ве­личины потенциала пробоя) мембраны? Теория электрического пробоя дает четкий ответ на этот вопрос. Самопроизвольному росту пор, случай­но зародившихся в липидном бислое, препятству­ют силы поверхностного натяжения на границе раздела фаз: липидный слой мембраны - окру­жающий водный раствор. Нужно приложить довольно большую разность потенциалов к мем­бране, чтобы преодолеть эти силы и вызвать рост поры. Все вещества, снижающие поверхностное натяжение (детергенты), облегчают самопроиз­вольный рост пор и снижают величину потен­циала пробоя. И продукты перекисного окисле­ния липидов, и продукты гидролиза фосфоли-пидов фосфолипазами (лизолецитины), и мно­гие белки снижают поверхностное натяжение на границе раздела фаз и таким образом уменьша­ют электрическую прочность мембраны. Меха­ническое растяжение мембраны действует сход­но, так как противодействует силам поверхност­ного натяжения. Таким образом, электрический пробой мембран оказывается универсальным механизмом нарушения барьерной функции мембран при патологии.

    Мембранные системы защиты от электри­ческого пробоя. Известны два фактора, с помо­щью которых живые клетки повышают элект­рическую стабильность своих мембранных струк­тур: асимметричный поверхностный потенци­ал и холестерин.

    Поверхностный потенциал возникает на мем­бране в случае появления на поверхности ли-пидного слоя заряженных химических группи­ровок, например таких, как карбоксил или фос­фат. Непосредственно на липидный бислой дей­ствует потенциал, равный разности величины мембранного потенциала (т.е. потенциала меж­ду водными средами, омывающими мембрану) и поверхностного потенциала (рис. 16). За счет нео­динаковой плотности зарядов на поверхностях мембраны реальная разность потенциалов, при­ложенная к липидному бислою, может быть боль­ше или меньше трансмембранной разности по­тенциалов. В большинстве биологических мемб­ран заряды распределены между поверхностя­ми таким образом, что разность потенциалов на липидном бислое меньше разности потенциалов между водными растворами, омывающими мем-

    брану. Это снижает вероятность пробоя мембра­ны разностью потенциалов, которая существует между водными фазами по сторонам мембран в живых клетках.

    Второй фактор, повышающий электрическую прочность мембран, - это холестерин. Было по­казано, что включение молекул холестерина в фосфолипидный бислой весьма заметно увели­чивает электрическую прочность мембран, т. е. повышает потенциал пробоя (см. рис. 14, Г). Осо­бенно заметно действие холестерина на повреж­денные мембраны. Защитные свойства холесте­рина против электрического пробоя мембраны можно объяснить влиянием холестерина на вяз­кость липидного бислоя. Известно, что введение холестерина в фосфолипидный бислой может по­высить вязкость последнего в 2-3 раза. Это при­водит к замедлению образования и роста дефек­тов (пор) в липидном бислое мембран. Как уже говорилось, именно образование и увеличение де­фектов в липидном бислое под действием при­ложенного электрического поля лежит в основе явления электрического пробоя.

    Нарушение структурных (матричных) свойств липидного бислоя. Наиболее изучены три характеристики липидного слоя мембран, от которых зависят его свойства как жидкой фазы (матрицы), обеспечивающей функционирование мембранных белков и рецепторов: поверхност­ный заряд, вязкость и площадь липидного слоя. Все эти характеристики исследуются с помощью флуоресцентных и спиновых зондов.




    Группы,несущие заряд


    Рис. 16. Влияние поверхностного потенциала (фд) на

    разность потенциалов на липидном слое мембран (ф,) при одном и том же мембранном потенциале (ф)


    Перекисное окисление липидов и действие мембранных фосфолипаз приводят к накоплению в липидной фазе мембран полиненасыщенных жирных кислот, которые придают мембране при нейтральных рН отрицательный заряд. Увели-


    Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    89


    чение отрицательных зарядов на поверхности мембраны облегчает связывание с мембраной ионов и белковых молекул, несущих положи­тельные заряды, и, наоборот, уменьшает взаи­модействие мембран с отрицательно заряженны­ми молекулами или другими мембранами. Свя­зывая больше ионов Са2*, мембраны с большим числом отрицательных зарядов на поверхности становятся более доступными для действия фос-фолипаз, но зато хуже связывают ионы Fe2+, которые ускоряют пероксидацию липидов.

    С другой стороны, при перекисном окисле­нии липидов происходит увеличение вязкости липидного слоя мембран. Значительное увели­чение вязкости имеет место также при увеличе­нии содержания в мембранах холестерина. Воз­растание вязкости приводит к торможению ра­боты мембранных рецепторов, а также встроен­ных в мембраны ферментов, таких как Na" -K+ -АТФаза и Са2* - Mg^-АТФаза. В свою очередь, это изменяет ионный баланс клетки и может при­вести к нарушениям метаболизма.

    С помощью флуоресцентных зондов было по­казано, что при перекисном окислении проис­ходит уменьшение площади поверхности липид­ного слоя мембран, а также площади, занимае­мой фосфолипидами на поверхности липопроте-инов плазмы крови. Это связано с окислением части жирно-кислотных цепей фосфолипидов и выходом их в водную фазу. Одним из результа­тов такого явления оказывается увеличение от­носительной концентрации холестерина в липид-ном монослое на поверхности липопротеинов, подвергнутых перекисному окислению.

    Липопротеины низкой плотности (ЛПНП) в результате этого переносят еще боль­ше холестерина в клеточные мемб­раны сосудистой стенки, чем нео-кисленные ЛПНП, и

    их атероген-ность возрастает.

    Липопротеины высокой плотности

    (ЛПВП), в нор­ме акцептирующие

    холестерин с мембран клеток и

    обладающие ан-тиатерогенным

    действием, в резуль­тате

    перекисного окисления

    полно­стью теряют способность

    акцепти­ровать холестерин.

    Возрастание ате-рогенных

    (холестерин-донорных) свойств

    ЛПНП и утрата

    антиатеро-генных

    (холестерин-акцепторных)

    свойств ЛПВП, несомненно, отно-
    сятся к числу причин того, почему перекисное окисление липидов в районе сосудистой стенки способствует развитию атеросклероза.

    3.2. ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    Повреждение, вызываемое различными болез­нетворными факторами, кроме местных измене­ний одновременно приводит к развитию общих реакций организма. Степень выраженности об­щих реакций неодинакова и имеет разное прояв­ление. К этим реакциям относятся стресс, реак­ции «острой фазы», лихорадка, шок, кома и др.

    3.2.1. Общий адаптационный синдром (стресс)



    При действии на организм различных повреж­
    дающих факторов в нем возникают двоякого рода
    изменения. С одной стороны, выявляется полом,
    повреждение, а с другой - как реакция на по­
    вреждение - включаются защитно-компенсатор­
    ные механизмы. Последняя группа механизмов
    всегда привлекала внимание исследователей.
    И.П. Павлов обозначил ее как «физиологическую
    меру» организма. В 1932 г. американский физи­
    олог У. Кеннон сформулировал принцип гомео-
    стазиса, суть которого заключается в том, что
    организм непрерывно поддерживает постоянство
    внутренней среды и при действии повреждаю­
    щих факторов, нарушающих это постоянство,
    включается сложная цепь различных компенса­
    торно-приспособительных механизмов, направ­
    ленных на его восстановление. Эти механизмы
    обычно стереотипны и включаются
    при действии различных повреждаю­
    щих факторов. Следовательно, они по
    своему характеру неспецифичны. У.
    Кеннон подчеркнул значение симпа­
    тического отдела нервной системы в
    этих реакциях, а Л. А. Орбели в 1935
    г. сформулировал положение об адап­
    тационно-трофической роли симпати­
    ческой нервной системы. Было пока­
    зано, что при повреждающих воздей­
    ствиях именно через симпатическую
    нервную систему активируются выс­
    шие отделы центральной нервной
    Г. Селье системы, идет мобилизация энерге-

    90
    1   2   3   4


    написать администратору сайта