Главная страница
Навигация по странице:

  • НАДФН + 20=0 -> -> НАДФ + + 2( 00) + Н + (супероксид анион-радикал)

  • Радикал коэнзима Q .

  • Основные стадии цепного окисления.

  • LOO-+ LH -> LOOH + L- Чередование двух последних реакций как раз и представляет собой цепную

  • LOO + Fe

  • Клеточные системы защиты от поврежде­ния свободными радикалами.

  • Местные и общие реакции организма на повреждение


    Скачать 451.5 Kb.
    НазваниеМестные и общие реакции организма на повреждение
    Дата19.10.2018
    Размер451.5 Kb.
    Формат файлаdoc
    Имя файлаPovrezhdenie_kletki.doc
    ТипГлава
    #53921
    страница3 из 4
    1   2   3   4

    Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    79

    рые синтетические соединения, например трет-бутилгидрокситолуол (ионол). Водорастворимые радикалы эффективно «перехватываются» аскор­биновой или мочевой кислотой. Для «улавлива­ния» радикалов гидроксила (НО) используют маннитол или бензойную кислоту, а иногда -этанол. Однако далеко не всегда ловушки спе­цифичны: многие из них реагируют не только с радикалами, но и с достаточно активными мо­лекулами.

    Прямым методом изучения свободных ради­калов можно считать метод электронного пара­магнитного резонанса (ЭПР), позволяющий об­наруживать молекулярные частицы и ионы ме­таллов, обладающие неспаренным электроном. По амплитуде и форме сигналов (спектров) ЭПР можно определять концентрацию частиц с не-спаренными электронами и судить об их строе­нии.

    К эффективным методам изучения реакций, идущих с участием радикалов, можно отнести метод хемилюминесценции (ХЛ). В основе его лежит то обстоятельство, что при взаимодействии радикалов друг с другом выделяется много энер­гии, которая может испускаться в виде фотонов (квантов света). Интенсивность такого свечения (ХЛ) пропорциональна скорости реакций, в ко­торой участвуют радикалы, и, следовательно, показывает изменение их концентрации в ходе изучаемого процесса.

    В биологических системах скорости образо-

    вания радикалов кислорода или липидных ра­дикалов в мембранах не так уж велики, зато очень велики скорости исчезновения этих ради­калов, поэтому концентрация радикалов в каж­дый данный момент времени (так называемая стационарная концентрация) обычно очень мала. Выход из положения заключается в использова­нии так называемых спиновых ловушек в мето­де ЭПР и активаторов свечения. В первом слу­чае к изучаемому образцу (например, к суспен­зии клеток, гомогенату ткани или раствору, где протекают реакции с участием свободных ради­калов) добавляют особые вещества - спиновые ловушки. Например, в качестве ловушки для радикалов гидроксила (ОН) используют фенил-бутилнитрон (ФБН).

    При взаимодействии ловушки с радикалом происходит присоединение радикала к ловушке с образованием нового, стабильного радикала, по­лучившего название спинового аддукта (от анг­лийского слова add - добавлять, складывать). Сиг­налы ЭПР спиновых аддуктов разных радика­лов слегка различаются по форме. Это позволя­ет идентифицировать радикалы, образующиеся в изучаемой системе. Для улавливания других радикалов (скажем, супероксида) используют другие ловушки.


    3.1.7. Свободнорадикальное (перекисное) окисление липидов

    Все радикалы, образующиеся в организме человека, можно разделить на природные и чу­жеродные. В свою очередь природные радикалы можно разделить на первичные, вторичные и третичные (рис. 8).

    Первичные радикалы - те радикалы, образо­вание которых осуществляется при участии оп­ределенных ферментных систем. Прежде всего к ним относятся радикалы (семихиноны), обра­зующиеся в реакциях таких переносчиков элек­тронов, как коэнзим Q (обозначим радикал как Q) и флавопротеины. Два других радикала - су-


    80

    Часть I. ОБЩАЯ НОЗОЛОГИЯ



    Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ

    6 Змсп № 532
    пероксид ('00 ) и монооксид азота (N0) также выполняют полезные для организма функции.

    Из первичного радикала - супероксида, а так­же в результате других реакций в организме образуются весьма активные молекулярные со­единения: перекись водорода, гипохлорит и гид­роперекиси липидов. Под действием ионов ме­таллов переменной валентности, в первую оче­редь Ре21', из этих веществ образуются вторич­ные радикалы (радикал гидроксила и радика­лы липидов), которые оказывают разрушитель­ное действие на клеточные структуры.

    Для защиты от повреждающего действия вто­ричных радикалов в организме используется большая группа веществ, называемых антиок-сидантами, к числу которых принадлежат ло­вушки, или перехватчики свободных радикалов. Примером последних служат альфа-токоферол, тироксин, восстановленный убихинон (QH2) и женские стероидные гормоны. Реагируя с ли-пидными радикалами, эти вещества сами пре­вращаются в радикалы антиоксидантов, которые можно рассматривать как третичные радикалы.

    Наряду с этими радикалами, постоянно обра­зующимися в том или ином количестве в клет­ках и тканях организма человека, разрушитель­ное действие могут оказывать радикалы, появ­ляющиеся при таких воздействиях, как иони­зирующее излучение, ультрафиолетовое облуче­ние или даже освещение интенсивным видимым светом, например светом лазера. Такие радика­лы можно назвать чужеродными. К ним при­надлежат также радикалы, образующиеся из по-

    павших в организм посторонних соединении, ксе­нобиотиков, многие из которых оказывают ток­сическое действие именно благодаря свободным радикалам, образующимся при метаболизме этих соединений.

    Радикалы кислорода. Клетки-фагоциты (к которым относятся гранулоциты и моноциты крови и тканевые клетки - макрофаги), сопри­касаясь с поверхностью клеток, бактерий, начи­нают энергично выделять супероксид: радика­лы, образующиеся в результате переноса элект­рона от НАДФН-оксидазного ферментного ком­плекса, встроенного в мембрану клеток и внут­риклеточных везикул-фагосом, на растворенный молекулярный кислород

    НАДФН + 20=0 ->

    -> НАДФ+ + 2( 00) + Н+ (супероксид анион-радикал)

    При этом каждая молекула НАДФН, окисля­ясь, отдает два электрона в цепь переноса элек­тронов, а каждый из этих электронов присоеди­няется к молекуле кислорода, в результате чего образуется супероксид анион-радикал (рис. 9).

    Супероксидные радикалы, как мы увидим позже, могут нанести вред как самим фагоци­там, так и другим клеткам крови и, разумеется, микробам, вызвавшим активацию макрофага. Естественно, что все эти клетки стараются изба­виться от супероксид-радикалов, для чего они вырабатывают ферменты, называемые суперок-сиддисмутазами. Различаясь по строению актив­ного центра и структуре полипептидной цепи, все СОД катализируют одну и ту же реакцию дисмутации супероксидного радикала:

    81

    род и перекись водорода. Судьба последней мо­жет быть разной (рис. 10).

    В норме фагоциты используют перекись во­дорода для синтеза гипохлорита, выделяя спе­циальный фермент - миелопероксидазу (МП). Миелопероксидаза катализирует реакцию миелопероксидаза

    Н202 + С1 ->• Н20 + СЮ (гипохлорит)

    Гипохлорит разрушает стенку бактериальной клетки и тем самым убивает бактерии. Перекись водорода диффундирует в клетки, но там разру­шается в результате активности ферментов ка-талазы и глутатионпероксидазы (GSH-перокси-дазы), которые катализируют соответственно такие реакции:

    каталаза

    2НЮ220 + 02

    Н202 + 2GSH

    GSSG + 2H20

    глутатионпероксидаза ->

    В присутствии ионов двухвалентного железа перекись водорода разлагается с образованием гидроксильного радикала (НО):

    Н202 + Fe2+ -» Fe3+ + НО + НО

    Эта реакция (известная как реакция Фентон) приводит к тяжелым последствиям для окружа­ющих клеток. Радикал гидроксила чрезвычай­но активен химически и разрушает почти лю­бую встретившуюся ему молекулу. Действуя на SH-группы, гистидиновые и другие аминокис­лотные остатки белков, НО' вызывает денатура­цию последних и инактивирует ферменты. В нуклеиновых кислотах НО' разрушает углевод­ные мостики между нуклеотидами и таким об-

    разом разрывает цепи ДНК и РНК, в результате чего происходят мутации и гибель клеток. Вне­дряясь в липидный слой клеточных мембран, гидроксильный радикал запускает (иницииру­ет) реакции цепного окисления липидов, что при­водит к повреждению мембран, нарушению их функций и гибели клеток.

    Гидроксильный радикал образуется не толь­ко в реакции Фентон, но и при взаимодействии ионов железа (Fe2+) с гипохлоритом (реакция Осипова):

    СЮ + Fe2+ + Н+ -» Fe3+ + С1 + НО

    Супероксидный радикал (00 )и продукты его метаболизма (Н202, НО', СЮ) называют актив­ными формами кислорода.

    Окись азота. К числу радикалов, синтезиру­емых клетками, относится монооксид азота 'NO, называемый также нитроксидом. Нитроксид об­разуется клетками стенок кровеносных сосудов (эндотелия); эта реакция катализируется гемсо-держащим ферментом N0 -синтазой. N0 играет ключевую роль в регуляции тонуса сосудов и кровяного давления: его недостаток приводит к гипертензии, избыток - к гипотензии. Наруше­ние метаболизма фактора расслабления вызыва­ет заболевания, связанные с изменением кровя­ного давления.

    ' N0 выделяется также клетками-фагоцитами и вместе с супероксид-радикалами используется для борьбы с микробами (преимущественно гриб­ковой природы). Полагают, что цитотоксическое действие N0 обусловлено его реакцией с супер­оксидом

    N = О + 00 + Н+

    > ONOOH (пероксинит-рит)


    82

    Часть I. ОБЩАЯ НОЗОЛОГИЯ





    убихинона (QH , гидрохинон-форма):

    Пероксинитрит, образующийся в этой реак­ции, может разлагаться с образованием 'ОН:

    О = N - О - ОН -> О = N - О + ОН (ради­кал гидроксила)

    Образование пероксинитрита и радикала гид­роксила приводит к повреждению клеток. По-видимому, одна из функций супероксиддисму-тазы состоит в предотвращении образования пе­роксинитрита за счет удаления супероксида из зоны образования окиси азота.

    Радикал коэнзима Q. Биологическое окисле­ние субстратов клеточного дыхания, таких как глюкоза, пировиноградная и янтарная кислоты и другие, осуществляется, как известно, в два этапа. На первом этапе в цикле трикарбоновых кислот происходит последовательный отрыв ато­мов водорода от субстрата и образование восста­новленных форм пиридиннуклеотидов НАДН и НАДФН. На втором этапе электроны от НАДН и НАДФН переносятся по так называемой ды­хательной цепи на кислород. В состав дыхатель­ной цепи входят флавопротеиды, комплексы негемового железа, убихинон и гемопротеиды (цитохромы a, b и с и цитохромоксидаза). Схе­ма дыхательной цепи дана на рис. 11.

    сн,

    Важным звеном цепи переноса электронов служит убихинон (коэнзим Q) :

    н,С-0

    СН,-СН=С=СН,)„Н

    Н,С-0

    радикал которого (семихинон, QH на рис. 11) образуется либо при одноэлектронном окислении

    гидрохинон катион-радикал нейтральный

    гидрохинона радикал (семихинон)

    либо при одноэлектронном восстановлении уби­хинона (Q на рис. 11):



    о

    О

    О О

    хинон

    анион-радикал

    нейтральный




    хинона

    радикал (семихинон)

    В норме этот радикал является рядовым уча­стником процесса переноса электронов, но при нарушении работы дыхательной цепи он может стать источником других, менее безобидных ра­дикалов, в первую очередь радикалов кислоро­да.

    Основные стадии цепного окисления. Реак­ция цепного окисления липидов играет исклю­чительную роль в клеточной патологии. Она про­текает в несколько стадий, которые получили название инициирование, продолжение, развет­вление и обрыв цепи (см. схему 3).

    Инициирование цепной реакции начинается с того, что в липидный слой мембран или ли-попротеинов внедряется свободный радикал.

    митохондрий Глава 3 / МЕСТНЫЕ И ОБЩИЕ РЕАКЦИИ ОРГАНИЗМА НА ПОВРЕЖДЕНИЕ 83



    Чаще всего это радикал гидроксила. Будучи небольшой по размеру незаряженной частицей, он способен проникать в толщу гидрофобного липидного слоя и вступать в химическое взаи­модействие с полиненасыщенными жирными кислотами (которые принято обозначать как LH), входящими в состав биологических мембран и липопротеинов плазмы крови. При этом образу­ются липидные радикалы:

    НО + LH -> Н20 + L Липидный радикал (L) вступает в реакцию с растворенным в среде молекулярным кислоро­дом, при этом образуется новый свободный ра­дикал - радикал липоперекиси (LOO ):

    L + 02 -> LOO

    Этот радикал атакует одну из соседних моле­кул фосфолипида с образованием гидропереки­си липида LOOH и нового радикала L':

    LOO-+ LH -> LOOH + L-

    Чередование двух последних реакций как раз и представляет собой цепную реакцию перекис-ного окисления липидов (см. схему 3).

    Существенное ускорение пероксидации липи­дов наблюдается в присутствии небольших ко­личеств ионов двухвалентного железа. В этом случае происходит разветвление цепей в резуль­тате взаимодействия Fe2i с гидроперекисями ли­пидов:

    Fe2+ + LOOH -> Fe3+ + НО + LO Образующиеся радикалы LO' инициируют новые цепи окисления липидов (см. схему 3): LO + LH -> LOH + L ;L + 02-> LOO -> и т.д.

    В биологических мембранах цепи могут со­стоять из десятка и более звеньев. Но в конце концов цепь обрывается в результате взаимодей­ствия свободных радикалов с антиоксидантами (InH), ионами металлов переменной валентнос­ти (например, теми же Fe2T) или друг с другом:

    LOO + Fe2+ + Н+ -> LOOH + Fe3+

    LOO + InH -> In ■+ LOOH

    LOO' + LOO' -> молекулярные продукты

    Последняя реакция особенно интересна, по­скольку она сопровождается свечением (хеми-люминесценцией). Интенсивность этой хемилю-минесценции очень мала, поэтому ее иногда на­зывают «сверхслабым свечением». Интенсив­ность свечения пропорциональна квадрату кон­центрации свободных радикалов в мембранах, а

    Схема 3 Цепная реакция перекисного окисления липидов

    скорость перекисного окисления прямо пропор­циональна концентрации тех же радикалов. Поэтому интенсивность «сверхслабого» свечения однозначно отражает скорость липидной перок­сидации в изучаемом биологическом материале и измерение хемилюминесценции довольно час­то используется при изучении перекисного окис­ления липидов в различных объектах.




    Рис. 12. Повреждающее действие перекисного окисления липидов на биологические мембраны


    Повреждающее действие пероксидации ли­пидов. На рис.12 показаны основные мишени перекисного окисления липидов в мембранных структурах клеток. Повреждаются либо белко­вые структуры, либо липидный бислой в целом. В последнее время ученые уделяют все большее внимание взаимодействию мембран с нуклеино­выми кислотами в ядре и митохондриях. По-видимому, одним из результатов пероксидации


    84

    Часть I. ОБЩАЯ НОЗОЛОГИЯ

    Наиболее известные антиоксиданты

    Таблица 10



    Антиоксидант

    Действие

    Церулоплазмин (плазма крови)

    Окисляет Fe2* до Fe3+ молекулярным кислородом

    Апо-белок трансферрина (плазма крови)

    Связывает Fe3*

    Ферритин (цитоплазма)

    Окисляет Fe2*n депонирует Fe3'

    Карнозин

    Связывает Fe2*

    Супероксиддисмутазы (повсеместно)

    Удаляют супероксид с образованием пероксида водорода

    Каталаза (внутри клеток)

    Разлагает пероксид водорода с выделением кислорода

    Глутатионпероксидазы (в цитоплазме)

    1. Удаляют пероксид водорода за счет окисления
    глутатиона

    2. Удаляют гидроперекиси липидов

    Глутатионредуктаза

    Восстанавливает окисленный глутатион

    Токоферол, тироксин, стероиды

    Перехватывают радикалы липидов

    Аскорбиновая кислота

    Регенерирует окисляющиеся токоферол и убихинон

    Глутатион

    Используется для восстановления пероксидов

    липидов может стать повреждение этих моле­кул со всеми вытекающими последствиями.

    Наиболее чувствительны к переписному окис­лению липидов сульфгидрильные, или тиоловые, группы (- SH) мембранных белков: ферментов, ионных каналов и насосов. В ходе окисления тиоловых групп образуются радикалы (- S), ко­торые затем либо взаимодействуют друг с дру­гом с образованием дисульфидов (- SS-), либо связываются с кислородом с образованием суль­фитов и сульфатов (- S03 и - S04). Большую роль в патологии клетки играет также повреждение ионтранспортирующих ферментов (например, Ca2t , М£2+-АТФазы), в активный центр которых входят тиоловые группы (рис. 12-1). Инактива­ция Са2+-АТФазы приводит к замедлению отка­чивания из клетки ионов кальция и ускорению их «протечки» в клетку (где их концентрация меньше). Это вызывает рост уровня ионов каль­ция в цитоплазме и повреждение клеточных структур.

    Окисление тиоловых групп мембранных бел­ков приводит к появлению дефектов в мембра­нах клеток и митохондрий. Под действием элек­трического поля через такие дефекты в клетки входят ионы натрия, а в митохондрии - ионы калия. В результате происходит увеличение ос­мотического давления внутри клеток и митохон­дрий и их набухание. Это приводит к еще боль­шему повреждению мембранных структур.

    Еще одним интересным примером может слу­жить окисление белков и последующее образо-

    вание белковых агрегатов в хрусталике глаза, вызванное пероксидацией липидов. Процесс при­водит к помутнению хрусталика и может счи­таться одной из причин развития старческой и других видов катаракты у человека.

    Наряду с белками и нуклеиновыми кислота­ми мишенью повреждающего действия перекис­ного окисления служит сам липидный бислой. Было показано, что продукты перекисного окис­ления липидов делают липидную фазу мембран проницаемой для ионов водорода и кальция (рис. 12-2; 12-3). Это приводит к тому, что в митохон­дриях окисление и фосфорилирование разобща­ются и клетка оказывается в условиях энерге­тического голода. Одновременно из митохондрий в цитоплазму выходят ионы кальция, которые повреждают клеточные структуры (см. выше).

    Но, быть может, самый важный результат пероксидации - это уменьшение электрической стабильности липидного слоя, которое приво­дит к электрическому пробою мембраны собствен­ным мембранным потенциалом (рис. 12-4). Элек­трический пробой вызывает полную потерю мем­браной ее барьерных функций.

    Клеточные системы защиты от поврежде­ния свободными радикалами. Свободные ради­калы преследовали живую материю с первых же моментов ее появления на Земле, и неудивитель­но, что в ходе эволюции клетки и организм в целом выработали нечто подобное глубокоэше-лонированной обороне, которая включает в себя ферменты и низкомолекулярные соединения, в


    1   2   3   4


    написать администратору сайта