Главная страница
Навигация по странице:

  • Причины возникновения статических зарядов

  • Опасные и вредные факторы статических зарядов

  • Методы по защите от статических зарядов

  • Метод отвода зарядов путем заземления

  • Метод рассеяния зарядов путем уменьшения удельного объемного и поверхностного электрического сопротивления

  • Метод нейтрализации зарядов

  • Список использованной литературы

  • Методы, исключающие или уменьшающие образование статических заря. Методы, исключающие или уменьшающие образование статических зарядов


    Скачать 80.23 Kb.
    НазваниеМетоды, исключающие или уменьшающие образование статических зарядов
    Дата09.05.2022
    Размер80.23 Kb.
    Формат файлаdocx
    Имя файлаМетоды, исключающие или уменьшающие образование статических заря.docx
    ТипСамостоятельная работа
    #519255


    Самостоятельная работа 2

    по предмету: Безопасность жизнедеятельности

    на тему: Методы, исключающие или уменьшающие образование статических зарядов.

    План

    • Введение (стр. 3-4)

    • Причины возникновения статических зарядов (стр. 5-7)

    • Опасные и вредные факторы статических зарядов (стр. 8-9)

    • Методы по защите от статических зарядов (стр. 10-11)

    • Метод отвода зарядов путем заземления (стр. 11-13)

    • Метод рассеяния зарядов путем уменьшения удельного объемного и поверхностного электрического сопротивления (стр. 14-15)

    • Метод нейтрализации зарядов (стр. 15-18)

    • Заключение (стр.19)

    • Список использованной литературы (стр. 20)



    Введение

    Существование человека в любой среде связано с воздействием на него и среду обитания электромагнитных полей. В случае неподвижных электрических зарядов мы имеем дело с электростатическими полями.

    Наряду с естественными статическими электрическими полями в условиях техно-сферы и в быту человек подвергается воздействию искусственных статических электрических полей.

    Электрические поля от избыточных зарядов на предметах, одежде, теле человека оказывают большую нагрузку на нервную систему человека, также чувствительна к электростатическим электрическим полям и сердечно-сосудистая система организма.

    Статическое электричество возникает в случае нарушения внутриатомного или внутримолекулярного равновесия, вследствие приобретения или потери электрона. Обычно атом находится в равновесном состоянии благодаря одинаковому числу положительных и отрицательных частиц - протонов и электронов. Электроны могут легко перемещаются от одного атома к другому. При этом они формируют положительные (где отсутствует электрон) или отрицательные (одиночный электрон или атом с дополнительным электроном) ионы. Когда происходит такой дисбаланс, возникает статическое электричество.

    Электрический заряд электрона – (-) кулон. Протон с таким же по величине зарядом имеет положительную полярность. Статический заряд в кулонах прямо пропорционален избытку или дефициту электронов, т.е. числу неустойчивых ионов. Кулон – это основная единица статического заряда, определяющая количество электричества, проходящее через поперечное сечение проводника за 1 секунду при силе тока в 1 ампер.

    У положительного иона отсутствует один электрон, следовательно, он может легко принимать электрон от отрицательно заряженной частицы. Отрицательный ион в свою очередь может быть либо одиночным электроном, либо атомом/молекулой с большим числом электронов. В обоих случаях существует электрон, способный нейтрализовать положительный заряд.

    Интенсивная электризация материалов часто выражается в ярких внешних проявлениях. Она препятствует нормальному ходу технологических процессов, обусловливает появление брака и снижение скоростей выполняемых операций. Так, например, в текстильном производстве это приводит к ограничению скорости обработки волокна, создает затруднения в бумажной и полиграфической промышленности, и во многих других отраслях. Искрообразование в результате статических зарядов в ряде случаев может привести к пожарам и взрывам, сопровождающимся значительным материальным ущербом. Пожары и взрывы создают непосредственную угрозу жизни человека. Известны случаи пожаров и взрывов, вызванных статическими зарядами на танкерах, при пневмотранспортировке сыпучих веществ, загрузке топливозаправщиков и т.п., связанные с человеческими жертвами. Особенно опасны разряды статического электричества в помещениях, резервуарах и аппаратах, заполненных горючими паро- и газо-воздушными смесями. Опасность, создаваемая статическим электричеством, и его нежелательные проявления вызвали необходимость разработки средств и методов по ограничению статической электризации, сопровождающей важнейшие технологические операции, и создания специальных приборов, способствующих быстрому рассеиванию зарядов статического электричества.


    Причины возникновения статических зарядов

    Электростатические заряды возникают на поверхностях некоторых материалов, как жидких, так и твердых, в результате сложного процесса контактной электролизации.



    Рис 1. Трибоэлектрическая шкала

    Электролизация возникает при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован. При разделении двух диэлектрических материалов происходит разделение электрических зарядов, причем материал, имеющий большую диэлектрическую проницаемость, заряжается положительно, а меньшую — отрицательно. Чем больше различаются диэлектрические свойства материалов, тем интенсивнее происходит разделение и накопление зарядов. На соприкасающихся материалах с одинаковыми диэлектрическими свойствами (диэлектрической проницаемостью) зарядов не образуется.

    Все физические вещества имеют свою характеристику на трибоэлектрической шкале, в зависимости от их способности создавать электрические заряды различных полюсов при трении.

    Трибоэлектрическая шкала показывает, как генерируются заряды на различных материалах. Когда два материала соприкасаются и разделяются, один ближе к верхней части серии принимает положительный заряд, другой - отрицательный заряд при трении. Материалы, которые далеко находятся друг от друга в таблице, как правило, имеют более высокую разность потенциалов, чем близко находящиеся материалы. Однако эти таблицы следует использовать только в качестве справочника, поскольку существует много материалов, которые трудно контролировать, чтобы обеспечить равный потенциал. Трибоэлектрическая шкала показана на рис.1.

    Интенсивность образования электрических зарядов определяется различием электрических свойств материалов в материалах электрических свойств, а также силой и скоростью трения. Чем больше сила и скорость трения и больше различие электрических свойств, тем интенсивнее происходит образование электрических зарядов.

    Например, электростатические заряды образуются на кузове двигающегося в сухую погоду автомобиля, если резина колес обладает хорошими изолирующими свойствами. В результате между кузовом и землей возникает электрическое напряжение, которое может достигнуть 10 кВ (киловольт) и привести к возникновению искры при выходе человека из автомобиля — разряд через человека на землю.

    Заряды могут возникнуть при измельчении, пересыпании и пневмотранспортировке твердых материалов, при переливании, перекачивании по трубопроводам, перевозке в цистернах диэлектрических жидкостей (бензина, керосина), при обработке диэлектрических материалов (эбонита, оргстекла), при сматывании тканей, бумаги, пленки (например, полиэтиленовой). При пробуксовывании резиновой ленты транспортера относительно роликов или ремня ременной передачи относительно шкива могут возникнуть электрические заряды с потенциалом до 45 кВ.

    Кроме трения, причиной образования статических зарядов является электрическая индукция, в результате которой изолированные от земли тела во внешнем электрическом поле приобретают электрический заряд. Особенно велика индукционная электролизация электропроводящих объектов. Например, на металлических предметах (автомобиль и т.п.), изолированных от земли, в сухую погоду под действием электрического поля высоковольтных линий электропередач или грозовых облаков могут образовываться значительные электрические заряды.

    На экранах мониторов и телевизоров положительные заряды накапливаются под действием электронного пучка, создаваемого электроннолучевой трубкой.

    В радиоэлектронной промышленности статическое электричество образуется при изготовлении, испытании, транспортировке и хранении полупроводниковых приборов и интегральных микросхем, в помещениях вычислительных центров, на участках множительной техники, а также в ряде других процессов, где применяются диэлектрические материалы, являясь побочным нежелательным фактором.

    В химической промышленности при производстве пластических материалов и изделий из них также происходит образование электростатических зарядов и полей напряженностью 240-250кВ/м.

    Опасные и вредные факторы статических зарядов

    При прикосновении человека к предмету, несущему электрический заряд, происходит разряд последнего через тело человека. Величины возникающих при разрядке токов небольшие и они очень кратковременны. Поэтому электротравм не возникает. Однако разряд, как правило, вызывает рефлекторное движение человека, что в ряде случаев может привести к резкому движению, падению человека с высоты.

    Кроме того, при образовании заряда с большим электрическим потенциалом вокруг них создается электрическое поле повышенной напряженности, которое вредно для человека. При длительном пребывании человека в таком поле наблюдаются функциональные изменения в центральной нервной, сердечно-сосудистой и других системах.

    У людей, работающих в зоне воздействия электростатического поля, встречаются разнообразные жалобы: на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Характерны своеобразные «фобии», обусловленные страхом ожидаемого разряда. Склонность к «фобиям» обычно сочетается с повышенной эмоциональной возбудимостью.

    Наибольшая опасность электростатических зарядов заключается в том, что искровой разряд может обладать энергией, достаточной для воспламенения горючей или взрывоопасной смеси. Искра, возникающая при разрядке электростатических зарядов, является частой причиной пожаров и взрывов. Так, удаление из помещения пыли из диэлектрического материала с помощью вытяжной вентиляции может привести к накоплению в газоходах электростатических зарядов и отложений пыли. Появление искрового разряда в этом случае может привести к воспламенению или взрыву пыли. Известны случаи очень серьезных аварий на предприятиях в результате взрывов в системах вентиляции.

    При перевозке легковоспламеняющихся жидкостей, при их перекачке по трубопроводам, сливе из цистерны или за счет плескания жидкости накапливаются электростатические заряды, и может возникнуть искра, которая воспламенит жидкость.

    Наибольшую опасность статическое электричество представляет на производстве и на транспорте, особенно при наличии пожаро-взрывоопасных смесей, пылей и паров легковоспламеняющихся жидкостей.

    В бытовых условиях (например, при хождении по ковру) накапливаются небольшие заряды, и энергии возникших искровых разрядов недостаточно для инициирования пожара в обычных условиях быта.

    Методы по защите от статических зарядов

    Для предупреждения возможности возникновения опасных искровых разрядов с поверхности оборудования, перерабатываемых веществ, а также с тела человека необходимо предусматривать, с учетом особенностей производства, следующие меры, обеспечивающие стекание возникающих зарядов статического электричества:

    1. отвод зарядов путем заземления оборудования и коммуникаций, а также обеспечения постоянного электрического контакта с заземлением тела человека;

    2. отвод зарядов путем уменьшения удельных объемных и поверхностных электрических сопротивлений;

    3. нейтрализация зарядов путем использования радиоизотопных, индукционных и других нейтрализаторов.

    Для снижения интенсивности возникновения зарядов статического электричества:

    1. всюду, где это технологически возможно, горючие газы должны очищаться от взвешенных жидких и твердых частиц; жидкости - от загрязнения нерастворимыми твердыми и жидкими примесями;

    2. всюду, где этого не требует технология производства, должно быть исключено разбрызгивание, дробление, распыление веществ;

    3. скорость движения материалов в аппаратах и магистралях не должна превышать значений, предусмотренных проектом.

    В случае, если невозможно обеспечить стекание возникающих зарядов, для предотвращения воспламенения среды внутри аппаратов искровыми разрядами необходимо исключить образование в них взрывоопасных смесей путем применения закрытых систем с избыточным давлением или использования инертных газов для: заполнения аппаратов, емкостей, закрытых транспортных систем и другого оборудования; передавливания легковоспламеняющихся жидкостей; пневмотранспорта горючих мелкодисперсных и сыпучих материалов и продувки оборудования при запуске.

    Метод отвода зарядов путем заземления

    Заземляющие устройства для защиты от статического электричества следует, как правило, объединять с заземляющими устройствами для электрооборудования.

    Сопротивление заземляющего устройства, предназначенного исключительно для защиты от статического электричества, допускается до 100 ом.

    Все металлические и электропроводные неметаллические части технологического оборудования должны быть заземлены независимо от того, применяются ли другие меры защиты от статического электричества.

    Неметаллическое оборудование считается электростатически заземленным, если сопротивление любой точки его внутренней и внешней поверхности относительно контура заземления не превышает 107 ом.

    Измерения этого сопротивления должны производиться при относительной влажности окружающего воздуха не выше 60% причем площадь соприкосновения измерительного электрода с поверхностью оборудования не должна превышать 20 см2, а располагаться при измерениях электрод должен в точках поверхности оборудования, наиболее удаленных от точек контакта этой поверхности с заземленными металлическими элементами, деталями, арматурой.

    Металлическое и электропроводное неметаллическое оборудование, трубопроводы, вентиляционные короба и кожухи термоизоляции трубопроводов и аппаратов, расположенные в цехе, а также на наружных установках, эстакадах и каналах, должны представлять собой на всем протяжении непрерывную электрическую цепь, которая в пределах цеха (отделения, установки) должна быть присоединена к контуру заземления не менее, чем в двух точках.

    Присоединению к контуру заземления при помощи отдельного ответвления независимо от заземления соединенных с ними коммуникаций и конструкций подлежат: аппараты, емкости, агрегаты, в которых происходит дробление, распыление, разбрызгивание продуктов; футерованные и эмалированные аппараты (емкости); отдельно стоящие машины, агрегаты, аппараты, не соединенные трубопроводами с общей системой аппаратов и емкостей.

    Резервуары и емкости объемом более 50 м3, за исключением вертикальных резервуаров диаметром до 2,5 м, должны быть присоединены к заземлителям с помощью не менее двух заземляющих проводников в диаметрально противоположных точках.

    Фланцевые соединения трубопроводов, аппаратов, корпусов с крышкой и соединения имеют достаточное для отвода зарядов статического электричества сопротивление и не требуют дополнительных мер по созданию непрерывной электрической цепи, например, установки специальных перемычек.

    В этих соединениях запрещается применение шайб из диэлектрических материалов и шайб, окрашенных неэлектропроводными красками.

    Металлические вентиляционные короба и кожухи термоизоляции трубопроводов и аппаратов в пределах цеха (установки) должны быть заземлены через каждые 40-50 м с помощью стальных проводников или путем присоединения непосредственно к заземленным аппаратам и трубопроводам, на которых они смонтированы.

    Наливные стояки эстакад для заполнения железнодорожных цистерн должны быть заземлены. Рельсы железнодорожных путей в пределах сливо-наливного фронта должны быть электрически соединены между собой и присоединены к заземляющему устройству, не связанному с заземлением электротяговой сети.

    Автоцистерны, а также танки наливных судов, находящиеся под наливом и сливом сжиженных горючих газов и пожароопасных жидкостей, в течение всего времени заполнения и опорожнения должны быть присоединены к заземляющему устройству.

    Контактные устройства для подсоединения заземляющих проводников от автоцистерн и наливных судов должны быть установлены вне взрывоопасной зоны.

    Гибкие заземляющие проводники сечением не менее б мм2 должны быть постоянно присоединены к металлическим корпусам автоцистерн и танков наливных судов и иметь на конце струбцину или наконечник под болт для присоединения к заземляющему устройству. При отсутствии постоянно присоединенных проводников заземление автоцистерны и наливных судов должно производиться инвентарными проводниками в следующем порядке: заземляющий проводник вначале присоединяется к корпусу цистерны (или танка), а затем к заземляющему устройству.

    Открывание люков автоцистерн и танков наливных судов и погружение в них шлангов должно производиться только после присоединения заземляющих проводников к заземляющему устройству.

    Резиновые (либо другие из неэлектропроводных материалов) шланги с металлическими наконечниками, используемые для налива жидкостей в железнодорожные цистерны, автоцистерны, наливные суда и другие передвижные сосуды и аппараты, должны быть обвиты медной проволокой диаметром не менее 2 мм (или медным тросиком сечением не менее 4 мм2) с шагом витка не более 100 мм Один конец проволоки (или тросика) соединяется пайкой (или под болт) с металлическими заземленными частями продуктопровода, а другой - с наконечником шланга.

    При использовании армированных шлангов или электропроводных рукавов их обвивка не требуется при условии обязательного соединения арматуры или электропроводного резинового слоя с заземленным продуктопроводом и металлическим наконечником шланга.

    Метод рассеяния зарядов путем уменьшения удельного объемного и поверхностного электрического сопротивления

    В тех случаях, когда заземление оборудования не предотвращает накопления опасных количеств статического электричества, следует принимать меры для уменьшения удельного объемного или поверхностного электрического сопротивления перерабатываемых материалов.

    Для уменьшения удельного поверхностного электрического сопротивления диэлектриков рекомендуется повышать относительную влажность; воздуха до 65-70% (если это допустимо по условиям производства). Для этой цели следует применять общее или местное увлажнение воздуха в помещении при постоянном контроле относительной влажности воздуха.

    Для местного увеличения относительной влажности воздуха в зоне, где происходит электризация материалов, рекомендуется:

    1. подача в эту зону водяного пара; при этом находящиеся в этой зоне электропроводные предметы должны быть заземлены;

    2. охлаждение электризующихся поверхностей до температуры на 10° С ниже температуры окружающей среды.

    Для уменьшения удельного поверхностного электрического сопротивления в случаях, когда повышение относительной влажности окружающей среды не эффективно, можно дополнительно применять:

    1. для химических волокон - обработку растворами поверхностно-активных веществ.

    2. для полимерных материалов:

    • нанесение растворов поверхностно-активных веществ на изделие погружением, пропиткой или распылением с последующей сушкой.

    • введение поверхностно-активных веществ при вальцевании, экструзии или смешении в смесителях.

    Для уменьшения удельного объемного электрического сопротивления диалектических жидкостей и растворов полимеров (клеев) может быть применено введение различных растворимых в них антистатических присадок, в частности, солей металлов переменной валентности высших карбоновых, нафтеновых и синтетических жирных кислот.

    Введение поверхностно-активных веществ и других антистатических добавок и присадок допустимо только в тех случаях, когда их применение не приводит к нарушению технических требований, предъявляемых к выпускаемой продукции.

    Метод нейтрализации зарядов

    Бывают случаи, когда нельзя достигнуть отвода зарядов статического электричества с помощью простых средств. Надежным методом нейтрализации зарядов статического электричества в таких случаях является создание электрических зарядов противоположной полярности и направление их к заряженному объекту.

    При рекомбинации зарядов достигается желаемое нейтральное состояние. Данный метод защиты получил достаточно широкое распространение в промышленности. В зависимости от того, каким способом производится генерация зарядов (ионов), методы отличаются друг от друга. Из многочисленных способов создания ионов в воздухе практическое значение имеют следующие два: ионизация воздуха посредством управляемого коронного разряда; ионизация воздух с использованием рентгеновского, гамма- и ультрафиолетового излучения, а также a- и b-частиц.

    В качестве примера рассмотрим принципиальную схему аппарата для нейтрализации статического электричества, в котором для генерации электрических зарядов используется коронный разряд (рис. 2). Заряды в данном случае нейтрализуются на синтетической ленте 3, которая приводится в движение роликами 1 и 2. Ионизатор 4, находящийся под высоким напряжением противоположной относительно зарядов наэлектризованной ленте полярности, создает коронный разряд. Электрический ток разряда, т.е. количество зарядов, движущихся к материалу, растет с повышением напряжения. Таким образом, заряды,

    направляющиеся к наэлектризованному материалу, будут компенсировать до требуемой величины его заряды. Наличие полярности и количество зарядов на материале контролируются электрометром 7. Регулируя напряжение регулятором 5 до тех пор, пока показания электрометра не станут равными нулю, можно добиться полной нейтрализации зарядов. Поскольку на внутренней поверхности ленты также может накапливаться заряд, то для полной нейтрализации возможно применение еще одного ионизатора, расположенного снизу от ленты. Однако экспериментально доказано, что практически для полной нейтрализации достаточно и одного ионизатора.



    Рис. 2. Принципиальная схема аппарата для нейтрализации статического электричества

    Радиоактивные нейтрализаторы в конструктивном исполнении достаточно просты и обычно имеют форму длинной пластины или диска с нанесенным на одной стороне радиоактивным препаратом. Чаще всего используют растворы радия (Ra) и полония (Po). Радий излучает частицы a и b с периодом полураспада Т1/2 = 1590 лет, а полоний – частицы a с периодом полураспада Т1/2 = 138 дней. Излучение a состоит из частиц гелия с зарядом 2e+ и глубиной проникновения в воздухе 30 – 75 мм. Излучение b состоит из электронов и имеет для радия глубину проникновения 1 м. Гамма-излучение по сравнению с a- и b-частицами обладает меньшей проникающей способностью.

    Радиоактивные ионизаторы располагают на таком расстоянии от нейтрализуемого тела, при котором достигается максимальная эффективность. Здесь следует отметить, что регулировать количество генерируемых зарядов (ионов) в данном типе нейтрализаторов достаточно сложно и, как правило, такая регулировка отсутствует.

    Для нейтрализации зарядов статического электричества на пучках нитей, волокон и в других случаях, когда заряженные участки материала расположены не в одной плоскости; а также на плоских поверхностях, когда нейтрализатор невозможно приблизить к ним на расстоянии менее 50 мм, следует использовать нейтрализаторы на основе Прометия-147.

    Применение этих нейтрализаторов для нейтрализации зарядов на сыпучих материалах (дробленных и гранулированных) ограничено малым ионизационным током, а также тем фактом, что запыление рабочей поверхности нейтрализатора резко снижает его эффективность.

    В случаях, когда материал (пленка, ткань, лента, лист) электризуется настолько сильно, либо движется со столь высокой скоростью, что применение радиоизотопных нейтрализаторов не обеспечивает нейтрализации зарядов статического электричества, допускается установка комбинированных нейтрализаторов представляющих собой сочетание радиоизотопного и индукционного (игольчатого) нейтрализаторов, либо взрывозащищенных индукционных, высоковольтных (постоянного и переменного напряжения), высокочастотных нейтрализаторов.

    В помещениях, не являющихся взрывоопасными, для нейтрализации зарядов статического электричества на плоских поверхностях (пленках, лентах, тканях, листах) во всех случаях, когда позволяет характер технологического процесса и конструкция машин, следует применять индукционные нейтрализаторы, как наиболее простые и дешевые.

    Устанавливаться они должны таким образом, чтобы расстояние между их коронирующими электродами (иглы, проволочные щетки, нить, лента) и заряженной поверхностью было минимальным и не превышало 20-30 мм.

    В случае невозможности применения индукционных нейтрализаторов или их недостаточной эффективности в помещениях, не являющихся взрывоопасными, следует применять высоковольтные нейтрализаторы и нейтрализаторы скользящего разряда.

    Для нейтрализации, зарядов статического электричества в труднодоступных местах, где невозможна установка нейтрализаторов, следует применять вдувание ионизированного воздуха. Ионизация воздуха в этом случае может производиться любым способом.

    В случае, когда этот способ нейтрализации применяется во взрывоопасном помещении, ионизаторы (кроме радиоизотопных) должны быть взрывозащищенными или располагаться в соседних помещениях, не являющихся взрывоопасными.

    Устройства для подачи ионизированного воздуха во взрывоопасные помещения должны иметь на всем своем протяжении заземленный металлический экран.

    В случае, когда материал заряжен преимущественно зарядами одного знака, желательно обеспечить униполярную ионизацию воздушного потока (ионами противоположного знака) В этом случае степень ионизации воздушного потока уменьшается медленнее, чем при биполярной ионизации, что позволяет устанавливать ионизатор на большем расстоянии.

    Заключение

    Статическое электричество - это совокупность явлений, связанных с возникновением, сохранением и релаксацией свободного электрического заряда на поверхности и в объеме диэлектрических и полупроводниковых веществ, материалов, изделий или на изолированных проводниках.

    Возникновение зарядов статического электричества происходит при деформации, дроблении веществ, относительном перемещении двух находящихся в контакте тел, слоев жидких и сыпучих материалов, при интенсивном перемешивании, кристаллизации, а также вследствие индукции.

    Наиболее чувствительны к электростатическим полям нервная, сердечно-сосудистая, нейрогуморальная и другие системы организма. Это вызывает необходимость гигиенического нормирования предельно допустимой интенсивности электростатического поля.

    Электростатическое поле характеризуется напряженностью, определяемой отношением силы, действующей в поле на точечный электрический заряд, к величине этого заряда. Единицей измерения напряженности является вольт на метр. Допустимый уровень напряженности электростатических полей - 60 кВ/м. в случае, если напряженность поля превышает это значение, должны применяться соответствующие средства защиты.

    Список использованной литературы:

    1. https://libraryno.ru/2013_nepi_1/

    2. https://natalibrilenova.ru/znachenie-staticheskogo-elektrichestva-v-nauke-i-tehnike/

    3. Безопасность жизнедеятельности. Э.А. Арустамова. - М: Дашков и К, 2016.

    4. Бутиков Е.И., Быков А.А., Кондратьев А.С. Физика для поступающих в вузы. - М.: Наука; Физмат, 2019.

    5. Долин П.А. Справочник по технике безопасности. - М.: Энергоатомиздат, 2016.

    6. Максимов Б.К. Обух А.А. Статическое электричество в промышленности и защита от него. 2018.

    7. Основы безопасности жизнедеятельности /Под ред. Л.В. Лункевич. - М.: АСТ, 2019.

    8. Хван Т.А., Хван П.А. Безопасность жизнедеятельности. - Ростов н/Д: Феникс, 2017.




    написать администратору сайта