Кинематический расчет. Методические указания к курсовому и дипломному проектированию для студентов всех специальностей
Скачать 2.62 Mb.
|
Министерство образования и науки Украины Донбасская государственная машиностроительная академия Кафедра «Основы конструирования механизмов и машин» МЕТОДИЧЕСКИЕ УКАЗАНИЯ к курсовому и дипломному проектированию для студентов всех специальностей Выбор электродвигателя и кинематический расчет привода Утверждено на заседании кафедры ОКММ Протокол №1 от 3 сентября 2002 Краматорск 2002 УДК 621.81 (07) Методические указания к курсовому и дипломному проектированию для студентов всех специальностей. Выбор электродвигателя и кинематический расчет привода / Сост. С.Г. Карнаух. - Краматорск: ДГМА, 2002. –64 с. Приведена методика кинематического расчета привода и выбора электродвигателя к нему. Содержатся справочные данные по асинхронным короткозамкнутым электродвигателям серии 4А, необходимые данные для кинематического расчета и выбора салазок для электродвигателей. Составитель: С.Г.Карнаух, доц ВВЕДЕНИЕВ настоящих методических указаниях приведены основные сведения, необходимые для обоснованного выбора электродвигателя серии 4А при заданной кинематической схеме привода и нагрузке на выходном валу привода. Приведена методика кинематического расчета привода, включающего открытые передачи гибкой связью (ременные и цепные) и закрытые зубчатые н червячные передачи (редукторы и коробки скоростей). Справочный материал позволяет осуществлять выбор электродвигателя и салазок для его крепления, а также выполнять практические расчеты. Пример расчета иллюстрирует правильность использования предложенной методики. 1 Общие сведенияДля приведения в движение исполнительных механизмов большинства машин используются проводы, состоящие из двигателей, систем механических передач и муфт, соединяющих отдельные валы. Таким образом, под приводом следует понимать устройство для приведения в действие рабочего органа машины. Наибольшее распространение, благодаря простоте конструкции, достаточной надежности, относительной дешевизне и высокому КПД, получили механические приводы. Приводы большей части машин допускают использование стандартных двигателей, муфт и механических передач. Механические приводы общего назначения классифицируют по числу и типу двигателя, а также по типу использующихся передач. По числу двигателей приводы делятся на групповые, oдно- и многодвигателевые. Групповой привод служит для приведения в движение нескольких отдельных рабочих органов машины. Привод этого типа используется в некоторых металлообрабатывающих станках, в различных строительных и погрузочно-разгрузочных машинах Групповой привод имеет большие габаритные размеры, сложную конструкцию и низкий КПД. Однодвигателевый привод распространен наиболее широко, особенно в машинах с одним рабочим органом, приводимым в движение от одного двигателя (в большинстве случаев электродвигателя). Многодвигателевый привод используется в сложных машинах, имеющих несколько рабочих органов или один рабочий орган, потребляющий большое количество энергии (например, конвейер большой длины). Такие приводы используются в подъемно-транспортных машинах, сложных металлообрабатывающих станках и т.п. По типу двигателей различаются приводы: с электродвигателями, с двигателями внутреннего сгорания, с паровыми и газовыми двигателями, гидро- и пневмодвигателями. В состав механических приводов могут входить такие типы передач: зубчатые (цилиндрические и конические), червячные, передачи с промежуточной гибкой связью (ременные цепные), передачи винт-гайка. Передачи в приводе могут быть как однотипными, так и комбинированными. 2 Сравнительная оценка механических передач приводов машин Одной из важнейших инженерных задач при проектировании машин является выбор привода. В некоторых приводах можно вообще обойтись без механических передач (вал электродвигателя напрямую посредством муфты соединяется с валом исполнительного механизма). В других приводах используется две механических передачи и более одного или разных типов. Кинематическим параметром, который определяет потребность использования механических передач в приводе, является ею передаточное число. Общее передаточное число привода определяется отношением частоты (угловой скорости вала двигателя к частоте (угловой скорости) приводного вала исполнительного механизма или рабочего органа машины: Поскольку частота вращения вала большинства электродвигателей высокая и постоянная или изменяется в незначительных пределах, а частота вращения приводного вала исполнительного механизма обычно достаточно низкая, то передаточное число привода . Если , а изменение направления вращения приводного вала исполнительного механизма можно осуществить за счет реверса двигателя, то приводной вал рабочего органа можно соединять с валом электродвигателя непосредственно с помощью муфты. Во всех остальных случаях составной частью привода являются механические передачи. Возможность использования в приводе машины той или иной механический передачи определяется рядом факторов: особенностями отдельных передач, общим передаточным числом привода, передаваемой мощностью и частотой вращения валов, расстоянием между валами и их взаимным расположением, наличием .необходимых условий технического обслуживания, ресурсом привода и др. Для возможности общей ориентации при проектировании приводов в табл. приведены основные сравнительные характеристики основных типов механических передач, которые чаще всего используются в серийных приводах энергетических, технологических и транспортных машин. Показатели относительных габаритных размеров, массы и стоимости передач приведены в сравнении с зубчатой цилиндрической передачей. Наиболее рациональным является использование механических передач в виде отдельных механизмов - зубчатых и червячных редукторов, коробок скоростей, вариаторов. Редукторы обладают высокой нагрузочной способностью, малыми габаритными размерами, могут обеспечивать достаточно высокие передаточные числа, просты в эксплуатации. Коробки скоростей применяются в случае необходимости ступенчатого регулирования частоты вращения приводного вала исполнительного механизма или изменения направления его вращения при постоянном направлении вращения вала электродвигателя. Вариаторы обеспечивают возможность плавного бесступенчатого регулирования передаточного числа привода и его реверса. Они позволяют выбирать наиболее выгодные режимы работы машины. Однако вариаторы имеют сложную конструкцию и низкую нагрузочную способность. Таблица - Сравнительные характеристики основных типов механических передач
Использование в приводах отдельных открытых передач (цепных, ременных) чаще обусловлено компоновкой машины, а также некоторыми их особенностями и преимуществами в сравнении с другие передачами. 3 Общая характеристика двигателеЙ Для приводов могут использоваться двигатели следующих типов: электродвигатели, двигатели внутреннее о сгорания, гидро- и пневмодвигатели. Тип двигателя выбирается с учетом следующих факторов: назначение машины, для которой проектируется привод, наличие того или иного источника энергии; потребляемая мощность; ограничения по массе, габаритам и условиям работы; режим работы привода и соответствие его механических характеристик условиям работы. Использование в приводах отдельных открытых передач (цепных, ременных) чаще обусловлено компоновкой машины, а также некоторыми их особенностями и преимуществами в сравнении с другие передачами. Гидро- и пневмодвигатели используются преимущественно в многодвигателевых приводах машин. Энергоносителем таких двигателей служит сжатая жидкость или воздух. Для использования гидро- и пневмодвигателей в приводах отдельных агрегатов машины необходимо иметь соответствующие централизованные системы подачи энергоносителя. Двигатели внутреннего сгорания наибольшее применение находят в транспорте и приводах энергетических машин - электрогенераторов и компрессоров. Они незаменимы для приводов машин, работающих в отдаленных районах, где отсутствуют линии электропередач. Главный недостаток двигателей внутреннего сгорания – загрязнение окружающей среды продуктами отработанных выхлопных газов Электродвигатели наиболее широко используются в приводах энергетических, технологических и транспортных машин. Они стандартизованы и выпускаются промышленностью разных типоразмеров в диапазоне мощностей- от 10 Вт до 400 кВт и более. Электродвигатели могут применяться в различных климатических условиях, на открытом воздухе, в запыленных помещениях, во влажных и химически активных средах. Электродвигатели делятся на двигатели постоянного и переменного тока. Двигатели постоянного тока обеспечивают плавное регулирование скоростей и широких пределах, имеют соответствующие механические характеристики, дают возможность добиться достаточной точности движения. Эти двигатели используются в приводах электрических транспортных средств, некоторых подъемных кранов и технологических машин. Двигатели переменного тока бывают однофазные асинхронные (имеют небольшую мощность и используются преимущественно в приводах бытовых машин и устройств), трехфазные синхронные (их частота вращения не зависит от нагрузки, применяют в приводах большой мощности) и трехфазные асинхронные. Последние имеют наибольшее распространение в разных отраслях хозяйства. Их преимущества по сравнению с другими типами двигателей: простота конструкции, меньшая стоимость, более высокая эксплуатационная надежность. К основным типам современных электродвигателей относятся трехфазные асинхронные электродвигатели серий 4A, 4АС, 4АР, МTKF, MTF, МТН. Трехфазные асинхронные двигатели единой серии 4А с короткозамкнутым ротором выпускаются мощностью 0,06…400 кВт и частой вращения ротора 50…355 мм. Такие двигатели используются в приводах машин, к которым не предъявляются особые требования в отношении пусковых характеристик. У асинхронных двигателей различают: - синхронную частоту вращения ротора (при отсутствие нагрузки) и - фактическую частоту вращения ротора (или номинальную). Синхронная частота вращения, т.е. частота вращения магнитного поля, зависит от частоты тока и числа пар полюсов : . Синхронная угловая скорость . У нагруженного двигателя частота вращения ротора всегда меньше синхронной: , где s - скольжение: . При , при . Трехфазные асинхронные электродвигатели изготовляют с числом пар полюсов p от 1 до 6. При частоте тока синхронная частота вращения зависит от : . Ряд синхронных частот вращения: 3000;1500;1000;750;600;500 мин-1. Тихоходные электродвигатели имеют значительные габариты и дороже быстроходных. Поэтому применять электродвигатели с частотой вращения 750 мин-1 и менее следует только в технически обоснованных случаях. Технические данные электродвигателей серии 4А указаны в ГОСТ 19523-81; их маркировка означат: 4АН - электродвигатели с короткозамкнутым ротором, защищенные от попадания частиц и капель, имеющие предохранение от прикосновения к вращающимся частям, находящимся под током; 4А - электродвигатели с короткозамкнутым ротором, закрытые, обдуваемые (табл. ); их применяют для привода машин, к которым не предъявляются особые требования. Электродвигатели 4АР с повышенным пусковым моментом по ГОСТ 20818-75 применяют для привода машин, имеющих значительную пусковую нагрузку (например, в приводах конвейеров, глиномялок, компрессоров, плунжерных насосов и других машин с повышенным трением или значительными инерционными нагрузками). Расшифровка полного обозначения типоразмеров двигателей серии 4А приведена в табл. . В табл. , и даны основные размеры и масса электродвигателей (рис. ).
Таблица — Двигатели трехфазные асинхронные короткозамкнутые серии 4А, закрытые, обдуваемые, с высотой оси вращения 50…250 мм (по ГОСТ 19523-81)
Продолжение таблицы
Продолжение таблицы
Продолжение таблицы
Примечания: 1 Первые два знака 4А в обозначении означают номер серии и асинхронный тип двигателя. Последние два знака УЗ означают, что двигатели предназначены для районов с умеренным климатом и работы в закрытых помещениях с естественной вентиляцией (3-я категория размещения). 2 Буква А после первых двух знаков означает, что станина и щиты из алюминия; отсутствие буквы – станина и щиты чугунные или стальные. Далее располагается двух- или трехзначное число, обозначающее высоту вращения в миллиметрах. После высоты оси вращения идут буквы L,M и S, характеризующие установочные размеры по длине станины, или буквы А и В, определяющие длину сердечника статора. Цифры 2,4,6,8 означают число полюсов.
|