Методичка к лаб ГРП. Методические указания к лабораторной работе по дисциплине Подземный и капитальный ремонт скважин
Скачать 2.9 Mb.
|
Результаты работы скважин до и после ГРП. Таблица 3.10
Литературный обзор 3.7 Новые технологии ГРП Существенное расширение области применения гидравлического разрыва и рост количества операций в течение последнего десятилетия связано с интенсивным развитием технологий проведения обработок. К новым эффективным методам в этой области следует отнести технологию осаждения проппанта на конце трещины или концевое экранирование трещины (TSO), которая позволяет целенаправленно увеличить ширину трещины, остановив ее рост в длину, и тем самым добиться существенно более высокой проводимости. Для снижения риска прорыва трещины в водо- или газоносные горизонты, а также для интенсификации выработки запасов низкопроницаемых слоев применяется технология селективного гидроразрыва. Постоянно создаются новые материалы для проведения ГРП. Для предотвращения выноса проппанта из трещины создана технология PropNET, предусматривающая закачку в пласт одновременно с проппантом специального гибкого стекловолокна, которое, вплетаясь между частицами проппанта, обеспечивает максимальную устойчивость проппантной пачки. Для снижения степени остаточного загрязнения трещины разработаны низкополимерные жидкости разрыва LowGuar и система добавок к деструктору CleanFLOW. Применяется незагрязняющая пласт жидкость ГРП ClearFrac, которая вообще не требует деструктора. Совершенствуется информационная база проведения ГРП. Основными источниками информации являются геологические, геофизические и петрофизические исследования, лабораторный анализ керна, а также промысловый эксперимент, состоящий в проведении микро- и минигидроразрывов перед основным ГРП. Таким образом определяется распределение напряжений в пласте, исследуются механические свойства пород, определяется эффективное давление разрыва и давление смыкания трещины, выбирается модель развития трещины, рассчитываются геометрические размеры трещины. Имеются специальные приборы для определения высоты и азимута трещины. Затем с использованием специальных программ с учетом цели ГРП осуществляется «дизайн» трещины. Использование новой технологии позволяет подобрать жидкость разрыва и проппант, максимально соответствующие конкретным условиям, и проконтролировать в реальном времени раскрытие и распространение трещины, транспортировку проппанта во взвешенном состоянии вдоль всей трещины, успешное завершение операции. В последние годы разрабатывается технология комплексного подхода к проектированию ГРП как элемент системы разработки. Такой подход основан на учете многих факторов, таких как проводимость и энергетический потенциал пласта, система расстановки добывающих и нагнетательных скважин, механика трещины, характеристики жидкости разрыва и проппанта, технологические и экономические ограничения . Расширение области применения ГРП. В связи с появлением новых технологий сейчас практически нет ограничений по проницаемости на применение ГРП, тогда как в соответствии с традиционными представлениями гидроразрыв применялся только на низкопроницаемых пластах. В средне- ивысокопроницаемых пластах эффективны короткие и широкие высокопроводящие трещины, в низкопроницаемых пластах эффективны трещины большой длины и меньшей проводимости. Увеличение производительности скважин после проведения ГРП определяется соотношением проводимостей пласта и трещины и размерами трещины, причем коэффициент продуктивности скважины не возрастает неограниченно с ростом длины трещины, существует предельное значение длины, превышение которой практически не приводит к росту дебита жидкости. Учитывая увеличение зон влияния скважин в результате создания трещин гидроразрыва при проектировании разработки с применением ГРП можно планировать более редкую сетку скважин. Основные ограничения на применение ГРП относятся к проведению операций в водонефтяных и газонефтяных зонах, которые могут вызвать ускоренное конусообразование и резкий прорыв воды и газа в скважины, а также в истощенных пластах с низкими остаточными запасами и в нефтенасыщенных линзах очень малого объема, т.к. это не обеспечит окупаемости ГРП. Метод ГРП имеет множество технологических решений, обусловленных особенностями конкретного объекта обработки и достигаемой целью. Технологии ГРП различаются, прежде всего, по объемам закачки технологических жидкостей и проппантов и, соответственно, по размерам создаваемых трещин. Наиболее широкое распространение получил локальныйгидроразрыв, как эффективное средство снижения сопротивления призабойной зоны и увеличения эффективного радиуса скважины. При этом бывает достаточным создание трещин длиной 10-20 м с закачкой десятков кубических метров жидкости и единиц тонн проппанта. В этом случае дебит скважин увеличивается обычно в 2-3 раза. Гидроразрыв средне- и высокопроницаемых пластов является одним из наиболее интенсивно развивающихся в настоящее время методов стимулирования скважин. В высокопроницаемых пластах основным фактором увеличения производительности скважины вследствие ГРП является ширина трещины, в отличие от низкопроницаемых пластов, где таким фактором является ее длина. Для создания коротких широких трещин используется технология TSO, которая позволяет снизить объем жидкости разрыва до 1-5 м3, одновременно увеличив массу проппанта до 20 и более тонн. Осаждение проппанта на конце трещины препятствует ее росту в длину. Дальнейшая закачка несущей проппант жидкости приводит к увеличению ширины трещины, которая доходит до 2.5 см, тогда как при обычном ГРП ширина трещины составляет 2-4 мм. В результате эффективная проводимость трещины (произведение проницаемости и ширины) составляет 500 - 3000 мкм2· мм. Эта же технология используется для предупреждения прорастания трещины к водонефтяному контакту. Технология TSO успешно применяется на месторождениях Северного моря, США, Канады, Бразилии, Венесуэлы, Мексиканского залива, Индонезии, Вьетнама, Саудовской Аравии, России. Создание коротких широких трещин в скважинах, вскрывающих средне- и высокопроницаемые пласты, дает хорошие результаты при значительном ухудшении коллекторских свойств в призабойной зоне, как средство увеличения эффективного радиуса скважины; в многопластовых песчаных коллекторах, где вертикальная трещина обеспечивает непрерывную связь тонких песчаных пропластков с зоной перфорации; в коллекторах с миграцией мельчайших частиц, где за счет снижения скорости течения вблизи ствола скважины предотвращается вынос песка; в газовых пластах для снижения негативных эффектов, связанных с турбулизацией потока вблизи скважины . Технология импульсногогидроразрыва позволяет создавать в скважине несколько радиально расходящихся от ствола трещин, что может эффективно использоваться для преодоления скин-эффекта, особенно в средне- и высокопроницаемых пластах. Проведение глубокопроникающегогидроразрыва с образованием протяженных трещин, приводит не только к увеличению проницаемости призабойной зоны, но и увеличению охвата пласта воздействием, вовлечением в разработку дополнительных запасов нефти и повышению нефтеизвлечения в целом. При этом возможно снижение текущей обводненности добываемой продукции. Оптимальная длина закрепленной трещины, превышение которой практически не приводит к росту дебита жидкости, при проницаемости пласта 0.01 -0.05 мкм2 обычно составляет 40-60 м, а объем закачки - от десятков до сотен кубических метров жидкости и десятки тонн проппанта. При проницаемости пласта порядка 0.001 мкм2 оптимальная длина трещины составляет 100-200 м, а объем закачки - сотни кубических метров жидкости и 100-200 тонн проппанта. Для вовлечения в промышленную разработку газовых коллекторов со сверхнизкой проницаемостью (менее 10 -4 мкм2) в США, Канаде и ряде стран Западной Европы успешно применяют технологию массированногоГРП. При этом создают трещины протяженностью около 1000 м с закачкой от сотен до тысяч кубических метров жидкости и от сотен до тысяч тонн проппанта. В большинстве случаев операции оказались успешными и привели к увеличению дебита в 3 - 10 раз. Получила распространение технология последовательной закачки в трещину проппантов, различающихся как по фракционному составу, так и по другим свойствам. ГРП и горизонтальные скважины. По характеру расширения зоны дренирования скважины глубокопроникающий и массированный гидроразрыв можно сравнить только с горизонтальными и пологонаправленными скважинам. Основные отличительные особенности каждой из этих технологий определяют их возможности по интенсификации добычи и увеличению нефтеизвлечения. Если направление трещины ГРП предопределено распределением тектонических напряжений в пласте, то направление горизонтального ствола можно выбирать сообразно с распределением запасов. Высокопроводящая трещина ГРП представляет собой поверхность, пересекающую пласт, к которой направлен поток флюида, тогда как горизонтальная скважина является линейным стоком, и, следовательно, в ее окрестности возникают гораздо более высокие фильтрационные сопротивления. Ситуация еще более усугубляется в анизотропных пластах, в которых проницаемость по вертикали существенно ниже проницаемости в горизонтальном направлении. В этом случае, в отличие от ГРП, эффект от бурения горизонтального ствола значительно уменьшается. Для сравнения приводятся некоторые оценки. Рассматривается однородный пласт постоянной толщины 15 м с эллиптическим контуром питания, эквивалентный радиус которого составляет 600 м. Предполагается, что в центре пласта находится горизонтальная скважина длины Lлибо вертикальная скважина, пересеченная вертикальной трещиной ГРП с полудлиной / и проводимостью kfw(произведение проницаемости трещины на ее ширину). Сравниваются горизонтальные скважины и трещины ГРП одинаковой длины L=2l=200, 400 м, а также горизонтальная скважина длины L=500 м в изотропном и анизотропном пласте при соотношении проницаемостей в горизонтальном и вертикальном направлениях kh/kv=1, 10 и kh=1, 10 мД. В табл. 3.11 показаны безразмерные дебиты скважин с ГРП QГРП/Qви горизонтальных скважин Qгор/Qв, где Qв -дебит вертикальной скважины в соответствующих условиях при нулевом скин-эффекте. Расчеты демонстрируют увеличение относительной эффективности ГРП в анизотропных и низкопроницаемых пластах. Существенные преимущества по сравнению с ГРП горизонтальные скважины имеют в водо- и газонефтяных зонах, где они эффективно используются для снижения конусообразования. Посредством горизонтального ствола сложной траектории можно организовать выработку отдельных нефтяных линз малого объема, самостоятельная разработка каждой из которых экономически неэффективна. В остальном области применения этих технологий значительно пересекаются, поэтому окончательный выбор в пользу одной из них должен делаться на основе технико-экономического анализа с учетом стоимости операции. Обычно операция ГРП в 5-10 раз дешевле вертикальной скважины, тогда как бурение горизонтального ствола в 1.5-3 раза дороже. |