Материалы п р фп. Материалы П Р ФП. Методические указания к практическим работам для студентов направления 21. 03. 01
Скачать 1.05 Mb.
|
Министерство науки и высшего образования Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский горный университет» Кафедра бурения скважин Физика пласта Методические указания к практическим работам для студентов направления 21.03.01 САНКТ-ПЕТЕРБУРГ 2022 УДК 622.24 (073) ФИЗИКА ПЛАСТА Методические указания к практическим работам / Санкт-Петербургский горный университет. Сост.: И.С. Фиалковский, И.А. Страупник. СПб, 2022. – 43 с. Методические указания «Физика пласта» содержат разделы, в которых рассмотрены темы практических занятий по определению параметров физических свойств пород-коллекторов. Каждый из разделов содержит краткую теоретическую часть и задачи для самостоятельного решения. Предназначены для студентов направления 21.03.01 «Нефтегазовое дело». Табл. 10. Ил. 14. Библиогр.: 7 назв. Научный редактор проф. М.В. Двойников Санкт-Петербургский горный университет, 2022 г. ВВЕДЕНИЕФизика пласта — наука, изучающая физические свойства пород нефтяных и газовых коллекторов; свойства пластовых жидкостей, газов и газоконденсатных смесей; методы их анализа, а также физические основы увеличения нефте- и газоотдачи пластов. Основные понятия курса «Физика пласта» базируются на изучении таких предметов, как «Физика», «Физическая и коллоидная химия», «Нефтегазопромысловая геология и гидрогеология», «Механика горных пород», «Физико–химические процессы массопереноса в пористых средах» и т.д. Основные задачи, которые решаются в курсе «Физика пласта» - это изучение фильтрационно-емкостных свойств пород-коллекторов, особенности и закономерности движения в них пластовых жидкостей, взаимодействие их между собой и поровой поверхностью коллекторов в различных горно-геологических и термобарических условиях. Бурение скважин на нефть и газ подразумевает хорошее знание геологического строения залежи, понимание ее физических характеристик (пористость, проницаемость, насыщенность и др.), и физико-химических свойств флюидов (нефти, газа и воды), насыщающих породы. Основной целью выполнения практических занятий является изучение основных физических свойств коллекторов нефти и газа, обучение студентов методам расчета основных свойств коллекторов и насыщающих их флюидов. ПОРОДЫ-КОЛЛЕКТОРЫ НЕФТИ И ГАЗАГорные породы подразделяют на три большие группы: магматические (изверженные), осадочные и метаморфические. 1. Магматические. Эта группа делится на два вида: эффузивные и интрузивные. Эффузивные породы (излившиеся, изверженные) образуются при изливании магмы на земную поверхность или океаническое дно. К этой группе относятся базальты, диабазы, порфириты и др. Интрузивные или глубинные породы образуются при медленном остывании магмы и под большим давлением в глубинах земной коры и мантии. К этой группе относятся граниты, лабрадориты, габбро. 2. Осадочные. Образуются в результате переотложения продуктов выветривания и разрушения различных горных пород, химического и механического выпадения осадка из воды, жизнедеятельности организмов или всех трех процессов одновременно. К этой группе относятся известняки, песчаники, доломиты и др. 3. Метаморфические. Образованы путем преобразования магматических, осадочных и самих метаморфических горных пород под воздействием высокой температуры, давления и различных химических процессов. К этой группе относятся мраморы, кварциты, сланцы и др. Горные породы, обладающие способностью вмещать нефть, газ или воду и отдавать их при разработке, называются коллекторами. Подавляющее большинство залежей углеводородов приурочено к группе осадочных коллекторов. По литологическому составу коллекторами нефти и газа являются: терригенные, карбонатные, вулканогенно-осадочные и кремнистые горные породы. Большую часть коллекторов относят либо к терригенному, либо к карбонатному виду. Терригенные коллекторы - это, в основном, песчаники, состоящие из зерен кварца, полевого шпата, слюды и других минералов (более 100 наименований). Карбонатные коллекторы – это, в основном известняки и доломиты. Накопление нефти, воды и газа происходит в пустотном пространстве коллекторов, которое может быть представлено порами (межзерновое пространство), трещинами и кавернами. В зависимости от строения и происхождения пород-коллекторов у одних преобладает пористость (в основном терригенные коллекторы), у других трещиноватость (карбонатные отложения, сланцы), также встречаются коллекторы смешанного типа. Пористость Пористость – это емкостной параметр горной породы, характеризующий её способность вмещать флюиды. Все горные породы являются пористыми системами. Минеральные компоненты, слагающие грунты, при неплотном прилегании друг к другу образуют промежутки различной величины, которые называются порами. Пористость подразделяют на первичную и вторичную. Пористость принято подразделять на полную (общую), открытую и эффективную или динамическую. Общая пористость (абсолютная, полная или физическая) – это совокупность всех пор в образце. Включает связанные (сообщающиеся) между собой и закрытые (изолированные) поры. Открытая пористость (пористость насыщения) – это совокупность сообщающихся между собой пор. Динамическая пористость – это совокупность тех поровых каналов, которые могут участвовать в фильтрации. Зависит так же, как и проницаемость, от степени открытости поровых каналов, от формы и размера частичек и сложности путей каналов течения. Различие между величиной открытой и динамической пористостью количественно учитывается так называемым структурным коэффициентом, определяемым объемом тупиковых пор и каналов, в которых нефть может находиться, но не принимать участия в фильтрационном потоке. Открытая пористость всегда больше динамической. Количественно пористость выражают в % или долях единицы и определяют через коэффициент пористости. Для полной пористости он выражается по формуле: Коэффициент открытой пористости рассчитывают по формуле: Таким образом, для определения пористости достаточно знать объемы пор и образца, объемы зерен и образца или плотности образца и зерен. Объем образца можно определить следующими способами: 1. Метод парафинизации. Предварительно взвешенный образец покрывают тонкой пленкой расплавленного парафина за 1-2 секунды, чтобы парафин не проник в поры и сразу застыл. Затем взвешивают образец с оболочкой и определяют его объем погружением в жидкость и вычитают объем оболочки, учитывая удельный вес (или плотность) парафина. Достоинством метода является возможность его использования для определения объема образцов рыхлых пород, а также образцов неправильной формы. 2. Метод вытеснения. При использовании этого метода образец погружают в жидкость, не проникающую в его поры (чаще всего используют ртуть) и таким образом определяют объем образца. Недостатком метода является то, что способ применим только к сильно сцементированным кернам (иначе при погружении в ртуть часть зерен может отпасть), а также невозможность учета прилипших к поверхности образца пузырьков воздуха из-за непрозрачности ртути. Вместе с тем, ртуть токсична. 3. Геометрический метод. Измерение геометрических размеров образцов проводят лишь для специально выточенных кернов идеальной формы без сколов зерен. 4. Метод Преображенского. Наиболее часто используемый метод, заключающийся в насыщении образца жидкостью (как правило используют керосин) и определения его объема погружением в ту же жидкость. По методу Преображенского в результате эксперимента мы получаем три значения, зафиксированные на весах: вес сухого образца (Р1), вес образца, насыщенного керосином в керосине (Р2) и вес образца, насыщенного керосином на воздухе (Р3). Объем открытых пор в данном случае, численно равен объему проникшей в поры жидкости (керосин) и может быть найден: ρкер – плотность керосина, кг/м3 Объем образца находят по формуле: Исходя из формул (3) и (4), коэффициент открытой пористости по методу Преображенского может быть найден как: Задача 1. Обработать результаты, полученные по итогам эксперимента по методу Преображенского и найти коэффициент открытой пористости Таблица 1 Исходные данные к задаче 1
продолжение таблицы 1
|