Главная страница
Навигация по странице:

  • Как устроен прибор

  • Особенности эксплуатации прибора

  • Влияние наведённого напряжения

  • Действие остаточного напряжения

  • Как пользоваться прибором

  • Таблица: параметры мегаомметра при замерах

  • 1.10 Термометры сопротивления: принцип действия, градуировка, схемы подключения.

  • Методические указания СПЕЦ. ЧАСТЬ. Методические указания по подготовке к экзамену на повышение квалификации Электромеханик по средствам автоматики и приборам технологического оборудования


    Скачать 1.09 Mb.
    НазваниеМетодические указания по подготовке к экзамену на повышение квалификации Электромеханик по средствам автоматики и приборам технологического оборудования
    Дата14.01.2023
    Размер1.09 Mb.
    Формат файлаdocx
    Имя файлаМетодические указания СПЕЦ. ЧАСТЬ.docx
    ТипМетодические указания
    #886483
    страница4 из 6
    1   2   3   4   5   6

    1.9 Мегаомметр: назначение, требования безопасности при применении.
    Мегаомметр — специальный измеритель, посредством которого выполняются замеры высоких показателей сопротивления. Основное отличие от традиционных омметров представлено тем, что замеры осуществляются на значительном уровне напряжения, самостоятельно генерируемым изоляционными измерителями.

    Функционирование измерителей изоляционного сопротивления объясняется законом Ома, действующем на участке электроцепи: I=U/R. Основные составные части, установленные внутри корпуса, представлены источником напряжения, имеющим постоянную и откалиброванную величину, а также токовым измерителем и клеммными выходами.

    На клеммах фиксируются при помощи обычных зажимов-«крокодилов» соединительные провода, а присутствующим амперметром замеряются токовые величины электроцепи. Для некоторых моделей характерно наличие шкалы с двумя видами значений или цифрами, отображающимися на экране.

    Как устроен прибор

    Разные модели измерителей отличаются своими конструкционными особенностями. Внутри старых приборов есть динамо-машины ручного типа, а новые устройства снабжаются источниками наружного и внутреннего типа.

    Конструктивной особенностью измерительной головки является рамочное взаимодействие, а переключательный тумблер отвечает за коммутационное обеспечение. Надёжный и прочный диэлектрический корпус снабжается переносной ручкой, портативным генератором-рукоятью складного типа, переключателем и специальными выходными клеммными элементами.

    Особенности эксплуатации прибора

    Любые измерительные мероприятия в электрических установках осуществляются исключительно исправными, обязательно испытанными и полностью проверенными электрическими приборами или устройствами со строгим соблюдением всех правил производимых замеров.

    Мегаомметры подбираются с целью проверки изолирующих свойств и замеров показателей сопротивления диэлектриков по установленным показателям.

    Влияние наведённого напряжения

    Электроэнергией, которая переносится проводами линий электрических передач, создаётся большое магнитное поле, изменяемое согласно синусоидальному закону. Такая особенность провоцирует наведение в проводниках из металла появление электродвижущей вторичной силы и токовых показателей значительной величины.

    Этой особенностью оказывается ощутимое воздействие на уровень точности всех выполняемых замеров, а образуемая сумма пары неизвестных величин тока может сделать метрологическую задачу весьма проблемной. Именно по этой причине замеры сопротивления сетевой изоляции в условиях напряжения — мероприятие абсолютно бесперспективное.

    Действие остаточного напряжения

    Формирование генератором параметров напряжения, которое поступает в замеряемую электросеть, способствует появлению разницы потенциалов между заземляющим контуром и проводами, что сопровождается ёмкостным образованием с наличием определённого заряда.

    Непосредственно после отсоединения измерительного проводника происходит быстрый разрыв электроцепи, что способствует частичному сохранению потенциала за счёт создания ёмкостного заряда внутри шины или проводной системы. При случайном или преднамеренном касании данного участка есть риск получения электрической травмы при прохождении разряда тока через тело. Предотвращение травматизма обеспечивается использованием мобильной системы заземления с рукоятью, обеспеченной качественной изоляцией.

    Прежде чем подключиться для выполнения замеров изоляции, важно убедиться в полном отсутствии остаточного заряда или напряжения внутри проверяемой схемы. С этой целью используются специализированные индикаторные устройства или вольтметры, обладающие соответствующими номинальными значениями. Для быстрой и абсолютно безопасной эксплуатации потребуется выполнить подсоединение одного конца заземляющего проводника к контуру заземления. Другому концу на проводнике обеспечивается контакт со штангой изоляции, что позволяет получить заземление для устранения остаточного заряда.

    Как пользоваться прибором

    При вращении рукояти ручного прибора или в результате нажатия кнопки электронных устройств на клеммные выходы подаются высокие показатели напряжение, которые посредством проводов поступают на измеряемую электроцепь или к электрическому оборудованию. При замерах на шкале или экране отображаются значения сопротивления.

    Таблица: параметры мегаомметра при замерах

    Элемент

    Минимальное изоляционное сопротивление

    Напряжение измерителя

    Особенности

    Электрические изделия и устройства с уровнем напряжения в пределах 50 В

    Соответствуют паспортным данным, но не меньше 0,5 МОм

    100 В

    При замерах полупроводники качественно зашунтированы

    Электрические изделия и устройства с уровнем напряжения в пределах 50–100В

    250В

    Электрические изделия и устройства с уровнем напряжения в пределах 100–380В

    500–1000В

    Электрические изделия и устройства с уровнем напряжения в пределах 380–1000В

    1000–2500В

    Устройства распределительного типа, электрощиты и токовые проводы

    Не меньше 1 МОм

    1000–2500В

    Замеряется каждая секция в распределительном устройстве

    Электрическая проводка, включая осветительные сети

    Не меньше 0,5 МОм

    1000В

    Внутри опасных помещений замеры выполняются ежегодно, в других — каждые три года

    Электрические плиты стационарного типа

    Не меньше 1 МОм

    1000В

    Замеры выполняются на нагретых и отключённых плитах ежегодно

    Правила безопасности при работе с прибором

    Современными мегаомметрами генерируется уровень напряжения в пределах 2500 В, поэтому выполнять работу таким прибором могут исключительно работники, прошедшие полный курс специальной подготовки и ознакомленные с правилами техники безопасности. В работе могут использоваться только полностью исправные и поверенные измерительные приборы. Замеры на раскороченных проводах показывают величину изоляционного сопротивления.

    На измерителях показателей сопротивления более старого образца такая величина равна «бесконечности».

    При эксплуатации электронного прибора, оснащённого современным цифровым дисплеем, показатели замеров всегда фиксированные.

    • Во время выполнения замеров изоляционного сопротивления категорически запрещены любые прикосновения к выходным клеммам измерительного прибора и контакт с оголёнными частями соединительных проводов в виде концов щупа. Нельзя касаться неизолированных металлических частей замеряемой электрической цепи в оборудовании, находящемся под высокими показателями напряжения.

    • Измерение изоляционного сопротивления производить категорически запрещается без проверки отсутствия напряжения, если запланированы мероприятия с жилами электрического кабеля или с любыми токоведущими частями электрических установок. Проверка на наличие или отсутствие в проводах и установках напряжения выполняется при помощи индикатора, специального тестера или указателя напряжения.

    • Запрещены мероприятия по замерам при наличии остаточного заряда на электрическом оборудовании. Для снятия остаточного заряда должны использоваться штанга изолирующего типа или заземление с кратковременным подсоединением к токоведущим участкам устройства. Остаточный заряд устраняется после проведения всех замеров.

    Использование прошедшего проверку и стандартные испытания мегаомметра возможно только после того, как будет подтверждена его работоспособность. Убедиться в корректной работе такого измерительного прибора необходимо непосредственно перед проведением замеров изоляционного сопротивления. С этой целью осуществляется подключение соединительных проводов к клеммам на выход, после чего производится проводное закорачивание, что позволяет приступить к измерениям. Следует помнить, что в условиях закороченных проводов показатели сопротивления должны быть нулевыми, а закороченные соединительные провода позволяют убедиться в их целостности.
    1.10 Термометры сопротивления: принцип действия, градуировка, схемы подключения.
    Термометры сопротивления – это устройства для определения температуры в диапазоне от -263 до +1000 градусов Цельсия. Они состоят из датчика, усилителя сигнала, регистрирующего и вспомогательных устройств, а также их соединителей. Эти устройства обладают неоспоримыми достоинствами:

    • широкий диапазон измерения температуры (у дорогих моделей);

    • высокая точность;

    • стабильность работы;

    • стойкость в вибрации;

    • компактные размеры;

    • возможность работать в агрессивных средах;

    • некоторые модели имеют небольшую стоимость.



    Но вместе с тем им присущи и некоторые недостатки:

    • высокая стоимость точных устройств;

    • необходимость соблюдать четкие требования при подключении;

    • наличие источника питания;

    • невозможность ремонта самостоятельно.

    Для грамотного применения таких термометров нужно использовать их преимущества и учитывать недостатки, а также знать устройство и принцип действия.

    Принцип действия

    Работа термометров основана на том, что некоторые металлы и полупроводники меняют свое электрическое сопротивление при изменении температуры окружающей среды. При этом у металлов при увеличении температуры сопротивление возрастает, их называют позисторами. У полупроводников оно падает, поэтому их название – термисторы. Измерение проводимости чувствительного элемента и является принципом действия. При этом различные материалы обладают разным температурным коэффициентом. Это значит, что одни реагируют на изменения больше, другие меньше. Этот параметр влияет на точность прибора. Всего существует несколько классов точности измерителей:

    АА, допуск точности – 0,1 градуса;

    A – 0,15;

    B – 0,3;

    C – 0,6.

    Отличия от термопары

    Несмотря на схожесть термометров сопротивления и термопар, у них разные принципы действия. В термопарах используются 2 проволоки из разных металлов, соединенные между собой. При изменении температуры в месте контакта образуется разность потенциалов и возникает термо-ЭДС (электродвижущая сила). Далее она фиксируется вольтметром и переводится в значение температуры. Таким образом, для использования термопары не нужен источник питания, и она проще в применении.

    Область применения

    Термометры сопротивления можно использовать практически повсеместно. Основные области применения:

    в промышленности – для определения нагрева печей;

    в трубопроводах – для веществ, состояние которых зависит от температуры;

    в медицине;

    в бытовых и других помещениях;

    в жилищно-коммунальном хозяйстве;

    везде, где нужно знать температуру.

    Виды и их характеристика

    Основное различие между термометрами – устройство датчика. Они сделаны из разных материалов, отличаются толщиной чувствительного элемента и имеют различную стоимость.

    Металлические

    Они бывают платиновые, никелевые и медные. Рассмотрим подробнее элементы их этих металлов.

    Платина. Самый дорогой материал, из нее изготавливаются самые точные лабораторные и эталонные приборы. Достоинства – очень высокая точность и широкий диапазон измерений, стабильность работы, практически линейная зависимость электропроводности от температуры (номинальная статическая характеристика, НСХ). Недостаток – высокая стоимость, хотя сейчас развитие технологий уменьшает количество платины, а значит, и цену. Все плюсы при этом сохраняются. Приборы с датчиком из платины обозначаются как ТСП (Термометр Сопротивления с платиновым датчиком).

    Никель. Наиболее сильно реагирует на изменение температуры, что упрощает регистрацию сигнала. По сравнению с платиной, диапазон измерений уже – от -60 до +180 градусов. Прибор абсолютно недееспособен при 350 градусах и выше. Несмотря на преимущества, в большинстве случаев никель можно заменить на медь.

    Медь. Диапазон температур – от -50 до +150. Достоинства – простота использования, низкая цена и почти линейная зависимость «температура-сопротивление». Но область применения таких датчиков ограничена диапазоном. Их обозначение – ТСМ (М – медь).

    Также существуют различные конструкции чувствительного элемента.

    Проволочный. Чувствительный элемент – проволока, намотанная на каркас из металла, керамики, кварца, слюды или пластмассы. Во избежание потерь на индукцию намотка бифилярная (это когда провод складывается вдвое и только затем наматывается). Между витками есть мелкодисперсный наполнитель из Al2O3, который нужен для дополнительной изоляции витков и амортизации при колебаниях. Катушка заключена в металлический корпус и загерметизирована.

    Пленочный. В этом типе датчика активный металл напыляется тонким слоем на основание из керамики или пластмассы. Далее на него наносится стеклянное, эпоксидное или пластиковое покрытие. Оно защищает элемент от внешних воздействий. Преимущества такого исполнения – небольшие габариты, умеренная стоимость, низкая инертность и высокое внутреннее сопротивление. Последнее нужно для того, чтобы сопротивлением соединительных проводов можно было пренебречь. А еще они лучше переносят вибрацию. Недостаток – стабильность измерений меньше, чем в проволочных. Но такие термопреобразователи постоянно совершенствуются, и вскоре этот недостаток полностью исчезнет.

    Металлические датчики можно покупать отдельно от прибора. Они взаимозаменяемые (в идентичных устройствах), и у разных датчиков одной модели одинаковая номинальная статическая характеристика. Это значительно облегчает использование таких устройств.

    Полупроводниковые

    Обычно они изготавливаются из германия и кремния. В качестве легирующей добавки выступает сурьма. Также есть кобальто-марганцевые (КМТ) и медно-марганцевые (ММТ) приборы, работающие в пределах от -90 до +180 градусов. Благодаря большому внутреннему сопротивлению датчика проводимостью соединителей можно пренебречь. Чувствительный элемент расположен в защитном корпусе.

    Преимущества – высокое быстродействие, возможность работы в сверхнизких температурах – от -270 градусов по Цельсию. Точность и стабильность измерений большие. Недостатки – нелинейная характеристика НСХ и невоспроизводимость градуировочной характеристики.

    Это значит, что датчики индивидуально настраиваются под конкретный измеритель, заменить их в дальнейшем нельзя.

    Благодаря нелинейной зависимости «температура-сопротивление» такие устройства скачкообразно меняют проводимость при определенной температуре. Это называется релейным эффектом и позволяет использовать данные приборы в системах сигнализации. Датчики по-разному крепятся на поверхность. Варианты креплений делятся на:

    ввинчивающиеся;

    поверхностные;

    вставные;

    с присоединительными проводами;

    с байонетными соединениями (это осевое перемещение и поворот, как в боксах для дисков).

    Расшифровка обозначений термометров сопротивления не составит труда. Обычно латиницей или кириллицей указывается его тип, далее цифрами – сопротивление в Ом при температуре 0 градусов Цельсия. Например, Pt100 – термометр платиновый, сопротивление термопреобразователя – 100 Ом при 0 градусов. Также есть несколько общепринятых сокращений:

    ТПТ – технический платиновый термометр;

    ТСПН – термометр, предназначенный для регистрации низких температур;

    ЭТС – эталонные термометры сопротивления, которые используются для калибровки других датчиков.

    Градуировка

    Она выполняется тремя способами.

    На шкалу наносятся значения температуры, которые соответствуют величине сопротивления датчика. Это более наглядный способ. Нелинейность зависимости можно компенсировать с помощью неравномерной разметки шкалы. Недостаток – погрешность равна цене деления шкалы.

    Фиксируется действительное значение сопротивления, которое затем по специальным таблицам переводится в температуру. Более трудоемкий способ индикации, но более точный. Если нужного значения нет в таблице, результат измерения интерполируется, получается точное значение температуры. Нелинейность характеристик измерителя не оказывает влияния на результат. Интерполяция – метод нахождения промежуточных значений величины по готовому дискретному набору ее значений. Не представляет большой сложности и выполняется по формулам.

    Фиксирование с помощью вычислительной техники. Совмещает все достоинства предыдущих способов. Результат выводится на дисплее.

    Схемы подключения

    При подключении термопреобразователей существуют различные варианты. На рис. представлены основные схемы подключения термопреобразователей а) – двухпроводная схема, б) – трехпроводная, в) четырехпроводная. При измерении сопротивления датчика температуры со стороны тепловычислителя к сопротивлению самого датчика добавляется сопротивление соединяющих проводов. Для учета сопротивления проводов существуют различные варианты подключения термопреобразователей. На рис. а) представлена двухпроводная схема подключения. Данная схема не позволяет учитывать сопротивление проводов. Применяется для небольших длин проводов до 3 м с термопреобразователями Pt500 и сечением провода не менее 0,75 мм2. На рис. б) приведена трехпроводная схема подключения. Применяется в большинстве случаев с контроллерами с трехпроводными схемами подключения. Провода должны быть одного сечения. На рис. в) приведена четырехпроводная схема подключения. Применяется в различных теплосчетчиках. Для термопреобразователя Pt100 сопротивление в 3 Ом увеличивает значение показание температуры примероно на 10 градусов для Pt500 на 3 градуса.
    Подключение термопреобразователей должно соответствовать схеме, указанной в документации на тепловычислитель.



    a)                                    б)                                    в)
    1.11 Программируемые логические контроллеры
    Программируемые логические контроллеры входят в оборудование, отвечающее за автоматизацию процессов. Плк-системы используются в малых предприятиях, крупных производствах.

    Плк-контроллер представляет собой микрокомпьютер с упрощенным алгоритмом, выполняющий типовые функции в заданном режиме. Применяют его и в бытовой технике, не только в сложных роботизированных устройствах. Унификация элементов, их взаимозаменяемость повышает надежность системы. Упрощает  ремонт и отладку.

    Любой плк Siemens или аналогичный, других производителей, ориентирован на выполнение конкретных действий. Микроконтроллер опрашивает блоки ввода информации, чтобы принять решение, сформировать на выходе готовую команду. Упрощенно схема стандартного элемента включает:

    • вход;

    • центр;

    • выход.

    Входные цепи образованы набором датчиков (аналоговых или цифровых), переключающих устройств, смарт-систем. В центральном блоке расположены: процессор, обрабатывающий команды, модуль памяти и средства коммуникации. Выходные цепи отвечают за передачу сигнала на моторы привода, вентиляцию, осветительную арматуру. Туда же допускается подключить управляющее смарт- устройство архитектуры ардуино или подобное. Необходимо также выполнить условие подключения ПЛК к цепям питания. Без них устройство работать не будет. Внешний компьютер через унифицированный интерфейс используется для отладки, программирования контроллера.



    Типы ПЛК

    Современные ПЛК, использующие инновационные технологии, далеко ушли от первых упрощенных реализаций промышленного контроллера, но заложенные в систему управления универсальные принципы были стандартизированы и успешно развиваются уже на базе новейших технологий.

    Крупнейшими мировыми производителями ПЛК сегодня являются компании Siemens AG, Allen-Bradley, Rockwell Automation, Schneider Electric, Omron. Кроме них ПЛК выпускают и многие другие производители, включая российские компании ООО КОНТАР, Овен, Сегнетикс, Fastwel Групп, группа компаний Текон и другие.

    По конструктивному исполнению ПЛК делят на моноблочные и модульные. В корпусе моноблочного ПЛК наряду с ЦП, памятью и блоком питания размещается фиксированный набор входов/выходов. В модульных ПЛК используют отдельно устанавливаемые модули входов/выходов. Согласно требованиям МЭК 61131, их тип и количество могут меняться в зависимости от поставленной задачи и обновляться с течением времени. ПЛК подобной концепции. Подобные ПЛК могут действовать в режиме «ведущего» и расширяться «ведомыми» ПЛК через интерфейс Ethernet.

    Моноблочные функционально завершенные ПЛК могут включать в себя небольшой дисплей и кнопки управления. Дисплей предназначен для отображения текущих рабочих параметров и вводимых с помощью кнопок команд рабочих программ и технологических установок. Более сложные ПЛК комбинируются из отдельных функциональных модулей, совместно закрепляемых на стандартной монтажной рейке. В зависимости от количества обслуживаемых входов и выходов, устанавливается необходимое количество модулей ввода и вывода.
    Источник питания может быть встроенным в основной блок ПЛК, но чаще выполнен в виде отдельного блока питания (БП), закрепляемого рядом на стандартной рейке.

    Первичным источником для БП чаще всего служит промышленная сеть 24/48/110/220/400 В, 50 Гц. Другие модели БП могут использовать в качестве первичного источник постоянного напряжения на 24/48/125 В. Стандартными для промышленного оборудования и ПЛК являются выходные напряжения БП: 12, 24 и 48 В. В системах повышенной надежности возможна установка двух специальных резервированных БП для дублирования электропитания.

    Для сохранения информации при аварийных отключениях сети электропитания в ПЛК используют дополнительную батарею.

    Как известно, первоначальная концепция программируемого логического контроллера сформировалась во времена перехода с релейно-транзисторных систем управления промышленным оборудованием на появившиеся тогда микроконтроллеры. Подобные ПЛК с 8- и 16-разрядными МП ограниченной производительности до сих пор успешно эксплуатируются и находят новые сферы применения.

    Огромный прогресс в развитии микроэлектроники затронул всю элементную базу ПЛК. У них значительно расширился диапазон функциональных возможностей. Несколько лет назад немыслимы были аналоговая обработка, визуализация технологических процессов или даже раздельное использование ресурсов ЦП в качестве непосредственного управляющего устройства. В настоящее время поддержка этих функций входит в базовую версию многих ПЛК.

    Система программирования является одной из примечательных и полезных особенностей ПЛК, она обеспечивает упрощенный подход к разработке управляющих программ для специалистов различного профиля.

    Именно в ПЛК впервые появилась удобная возможность программирования контроллеров путем составления на экране компьютера визуальных цепей из релейных контактов для описания операторов программы (рисунок 6). Таким образом, даже весьма далекие от программирования инженеры-технологи быстро осваивают новую для себя профессию. Подобное программирование называют языком релейной логики или Ladder Diagram (LD или LAD). Задачи, решаемые при этом ПЛК, значительно расширяются за счет применения в программе функций счетчиков, таймеров и других логических блоков.


    Задача программирования ПЛК еще более упрощается благодаря наличию пяти языков, стандартизованных для всех платформ ПЛК. Три графических и два текстовых языка программирования взаимно совместимы. При этом одна часть программы может создаваться на одном языке, а другая — на другом, более удобном для нее.

    К графическим средствам программирования ПЛК относятся язык последовательных функциональных блоков (Sequential Function Chart, SFC) и язык функциональных блоковых диаграмм (Function Block Diagram, FBD), более понятные для технологов. Для программистов более привычными являются язык структурированного текста (Statement List, STL), напоминающий Паскаль, и язык инструкций (Instruction List, IL), похожий на типичный Ассемблер.

    Конечно, простота программирования ПЛК является относительной. Если с программированием небольшого устройства может после обучения справиться практически любой инженер, знакомый с элементарной логикой, то создание сложных программ потребует знания основ профессии программиста и специальных познаний в программировании ПЛК.

    Упростить создание программного обеспечения для современных ПЛК позволяют специальные комплексы, такие как ISaGRAF, OpenPCS и другие инструменты, не привязанные к какой-либо аппаратной платформе ПЛК и содержащие все необходимое для автоматизации труда программиста. Для отладки сложных проектов на основе компонентов TI компания предлагает специальные отладочные комплекты и необходимое программное обеспечение.

    Перед началом работы ПЛК выполняет первичное тестирование оборудования и загрузку в ОЗУ и ПЗУ операционной системы и рабочей программы пользователя. Стандартный ПЛК кроме рабочего режима имеет режим отладки с пошаговым выполнением программы, с возможностью просмотра и редактирования значений переменных.

    Рабочий режим ПЛК состоит из повторяющихся однотипных циклов, каждый из них включает три этапа:

    ◾опрос всех датчиков с регистрацией их состояния в оперативной памяти;

    ◾последовательный анализ рабочей программы с использованием данных о текущем состоянии датчиков и с формированием управляющих воздействий, которые записываются в буферные регистры;

    ◾одновременное обновление контроллером состояния всех своих выходов и начало очередного этапа опроса датчиков.

    Процесс исполнения программы ПЛК можно контролировать на экране подключенного компьютера с отображением состояния отдельных параметров. Например, процедуры включения и выключения насоса могут меняться в зависимости от требуемой задержки, значение которой задается специальной переменной.

    При необходимости можно остановить выполнение программы и перевести ПЛК в режим программирования, затем на экране компьютера изменить ход выполнения программы или отдельные параметры и снова записать их в память ПЛК.
    1   2   3   4   5   6


    написать администратору сайта