Электронные измерительные приборы. Мегаомметр. Правила безопасности при работе с прибором 11 Сертифицированные мегаомметры обзор производителей 14 Заключение 17 Список использованных источников 18
Скачать 1.19 Mb.
|
СодержаниеВведение 3 Мегаомметр: что такое, область применения и принцип действия 4 Принип работы и устройство мегаомметра ЭСО202/2Г 5 Особенности эксплуатации прибора ЭСО202/2Г 8 Использование прибора ЭСО202/2Г 10 Правила безопасности при работе с прибором 11 Сертифицированные мегаомметры: обзор производителей 14 Заключение 17 Список использованных источников 18 ВведениеЭлектроизмерительные приборы - техническое устройство с помощью которого происходит измерение электрических величин. Средства электрических измерений широко применяются в энергетике, связи, промышленности, на транспорте, в научных исследованиях, медицине, а также в быту — для учёта потребляемой электроэнергии. Используя специальные датчики для преобразования величин в электрические, электроизмерительные приборы можно использовать для измерения самых разных физических величин, что ещё больше расширяет диапазон их применения. Они служат для контроля режима работы электрических установок, их испытания и учета расходуемой электрической энергии. В зависимости от назначения электроизмерительные приборы подразделяют на амперметры (измерители тока), вольтметры (измерители напряжения), ваттметры (измерители мощности), омметры (измерители сопротивления), частотомеры (измерители частоты переменного тока), счетчики электрической энергии и др. Различают две категории электроизмерительных приборов: рабочие — для контроля режима работы электрических установок в производственных условиях и образцовые — для градуировки и периодической проверки рабочих приборов. Электроизмерительные приборы будут крайне полезны как в быту, так и для исправления неисправностей, а также они понадобятся для профессиональных процедур с электроприборами. Мегаомметр: что такое, область применения и принцип действияМегаомметры — удобные и функциональные приборы для измерения сопротивления изоляции, позволяют не только выполнить точные замеры, но и убедиться в целостности изоляционного материала. Измерителями изоляционного сопротивления пользуются преимущественно профессиональные электрики и специалисты, обслуживающие высоковольтное электрическое оборудование, что обусловлено особенностями такого устройства. Прибор позволяет замерять большие значения в сопротивлении цепей, изоляционных материалах, двигателях, телекоммуникационных установках и других видах техники, а основным назначением является определение безопасности эксплуатации проверяемых объектов. Мегаомметр — специальный измеритель, посредством которого выполняются замеры высоких показателей сопротивления. Основное отличие от традиционных омметров представлено тем, что замеры осуществляются на значительном уровне напряжения, самостоятельно генерируемым изоляционными измерителями. Функционирование измерителей изоляционного сопротивления объясняется законом Ома, действующем на участке электроцепи: I=U/R. Основные составные части, установленные внутри корпуса, представлены источником напряжения, имеющим постоянную и откалиброванную величину, а также токовым измерителем и клеммными выходами. На клеммах фиксируются при помощи обычных зажимов-«крокодилов» соединительные провода, а присутствующим амперметром замеряются токовые величины электроцепи. Для некоторых моделей характерно наличие шкалы с двумя видами значений или цифрами, отображающимися на экране. Рисунок 1 – Принцип работы Принип работы и устройство мегаомметра ЭСО202/2ГМегаомметры используются в замерах изоляционного сопротивления, а также с целью определения коэффициента изоляционной абсорбции электрического оборудования, которое не пребывает в условиях рабочего напряжения. Измерители изоляционного сопротивления классифицируются в зависимости от типовых особенностей схемы и способа индикации. Цифровые модели являются более дешёвыми приспособлениями, а аналоговые приборы имеют высокую стоимость, но отличаются высокими показателями точности осуществляемых измерений. Основная область применения в настоящее время представлена производственными и распределительными системами электрической энергии, системами контроля эксплуатации электрического оборудования в промышленности, лабораториях и в полевых условиях. В быту такие приборы не слишком востребованы. Разные модели измерителей отличаются своими конструкционными особенностями. Внутри старых приборов есть динамо-машины ручного типа, а новые устройства снабжаются источниками наружного и внутреннего типа. Рисунок 2 – Схема ЭСО202/2Г На схеме изображены элементы мегаомметра «Л» – зажим «Линия»; «Э» – зажим «Экран». «З» – зажим «Земля»; Рисунок 3 – Схема работы Выходная мощность приборов, созданных для проверки изоляции промышленного высоковольтного оборудования может в несколько раз превышать характеристики моделей, предназначенных для работы в условиях бытовой электропроводки. Конструктивной особенностью измерительной головки является рамочное взаимодействие, а переключательный тумблер отвечает за коммутационное обеспечение. Надёжный и прочный диэлектрический корпус снабжается переносной ручкой, портативным генератором-рукоятью складного типа, переключателем и специальными выходными клеммными элементами. Особенности эксплуатации прибора ЭСО202/2ГЛюбые измерительные мероприятия в электрических установках осуществляются исключительно исправными, обязательно испытанными и полностью проверенными электрическими приборами или устройствами со строгим соблюдением всех правил производимых замеров. Рисунок 4 – Последовательность операций Прежде чем приступать к измерениям, убедитесь в исправности мегаомметра. Мегаомметры подбираются с целью проверки изолирующих свойств и замеров показателей сопротивления диэлектриков по установленным показателям. Электроэнергией, которая переносится проводами линий электрических передач, создаётся большое магнитное поле, изменяемое согласно синусоидальному закону. Такая особенность провоцирует наведение в проводниках из металла появление электродвижущей вторичной силы и токовых показателей значительной величины. Этой особенностью оказывается ощутимое воздействие на уровень точности всех выполняемых замеров, а образуемая сумма пары неизвестных величин тока может сделать метрологическую задачу весьма проблемной. Именно по этой причине замеры сопротивления сетевой изоляции в условиях напряжения — мероприятие абсолютно бесперспективное. Формирование генератором параметров напряжения, которое поступает в замеряемую электросеть, способствует появлению разницы потенциалов между заземляющим контуром и проводами, что сопровождается ёмкостным образованием с наличием определённого заряда. Схема действия остаточного напряжения Рисунок 6 – Остаточное нарпяжение Перед подключение для выполнения замеров нужно убедиться в отсутствии остаточного напряжения Непосредственно после отсоединения измерительного проводника происходит быстрый разрыв электроцепи, что способствует частичному сохранению потенциала за счёт создания ёмкостного заряда внутри шины или проводной системы. При случайном или преднамеренном касании данного участка есть риск получения электрической травмы при прохождении разряда тока через тело. Предотвращение травматизма обеспечивается использованием мобильной системы заземления с рукоятью, обеспеченной качественной изоляцией. Прежде чем подключиться для выполнения замеров изоляции, важно убедиться в полном отсутствии остаточного заряда или напряжения внутри проверяемой схемы. С этой целью используются специализированные индикаторные устройства или вольтметры, обладающие соответствующими номинальными значениями. Для быстрой и абсолютно безопасной эксплуатации потребуется выполнить подсоединение одного конца заземляющего проводника к контуру заземления. Другому концу на проводнике обеспечивается контакт со штангой изоляции, что позволяет получить заземление для устранения остаточного заряда. Использование прибора ЭСО202/2ГПри вращении рукояти ручного прибора или в результате нажатия кнопки электронных устройств на клеммные выходы подаются высокие показатели напряжение, которые посредством проводов поступают на измеряемую электроцепь или к электрическому оборудованию. При замерах на шкале или экране отображаются значения сопротивления. Элемент Минимальное изоляционное сопротивление Напряжение измерителя Особенности Электрические изделия и устройства с уровнем напряжения в пределах 50 В Соответствуют паспортным данным, но не меньше 0,5 МОм 100 В При замерах полупроводники качественно зашунтированы Электрические изделия и устройства с уровнем напряжения в пределах 50–100В 250В Электрические изделия и устройства с уровнем напряжения в пределах 100–380В 500–1000В Электрические изделия и устройства с уровнем напряжения в пределах 380–1000В 1000–2500В Устройства распределительного типа, электрощиты и токовые проводы Не меньше 1 МОм 1000–2500В Замеряется каждая секция в распределительном устройстве Электрическая проводка, включая осветительные сети Не меньше 0,5 МОм 1000В Внутри опасных помещений замеры выполняются ежегодно, в других — каждые три года Электрические плиты стационарного типа Не меньше 1 МОм 1000В Замеры выполняются на нагретых и отключённых плитах ежегодно. Таблица1 - Параметры мегаомметра при замерах Правила безопасности при работе с приборомСовременными мегаомметрами генерируется уровень напряжения в пределах 2500 В, поэтому выполнять работу таким прибором могут исключительно работники, прошедшие полный курс специальной подготовки и ознакомленные с правилами техники безопасности. В работе могут использоваться только полностью исправные и поверенные измерительные приборы. Замеры на раскороченных проводах показывают величину изоляционного сопротивления. На измерителях показателей сопротивления более старого образца такая величина равна «бесконечности». При эксплуатации электронного прибора, оснащённого современным цифровым дисплеем, показатели замеров всегда фиксированные. Во время выполнения замеров изоляционного сопротивления категорически запрещены любые прикосновения к выходным клеммам измерительного прибора и контакт с оголёнными частями соединительных проводов в виде концов щупа. Нельзя касаться неизолированных металлических частей замеряемой электрической цепи в оборудовании, находящемся под высокими показателями напряжения. Измерение изоляционного сопротивления производить категорически запрещается без проверки отсутствия напряжения, если запланированы мероприятия с жилами электрического кабеля или с любыми токоведущими частями электрических установок. Проверка на наличие или отсутствие в проводах и установках напряжения выполняется при помощи индикатора, специального тестера или указателя напряжения. Запрещены мероприятия по замерам при наличии остаточного заряда на электрическом оборудовании. Для снятия остаточного заряда должны использоваться штанга изолирующего типа или заземление с кратковременным подсоединением к токоведущим участкам устройства. Остаточный заряд устраняется после проведения всех замеров. Использование прошедшего проверку и стандартные испытания мегаомметра возможно только после того, как будет подтверждена его работоспособность. Убедиться в корректной работе такого измерительного прибора необходимо непосредственно перед проведением замеров изоляционного сопротивления. С этой целью осуществляется подключение соединительных проводов к клеммам на выход, после чего производится проводное закорачивание, что позволяет приступить к измерениям. Следует помнить, что в условиях закороченных проводов показатели сопротивления должны быть нулевыми, а закороченные соединительные провода позволяют убедиться в их целостности. На сегодняшний день реализуется огромное количество мультиметров с измерениями уровня сопротивления в диапазоне до 100 МОм. Несмотря на солидный рабочий диапазон, такие тестеры не могут стать достойной заменой мегаомметру, которым попутно проверяется электрическая изоляционная прочность и обеспечивается работа с измерительным напряжением 250, 500, 1000 В и даже больше. Рисунок 7 - Измерение В настоящее время к числу наиболее распространённых измерительных приборов относятся мегомметры М-4100, ЭСО202/2Г и MIC-1000, а также MIC-2500. Сертифицированные мегаомметры: обзор производителейК основным, наиболее значимым техническим характеристикам и параметрам мегаомметров относятся: сопротивление — в пределах 0–49 900 Мом; напряжение — 100–5000 В; рабочие температурные диапазоны — от -20 до + 40°С. Таблица 2 - Список приборов с характеристиками Мегаомметры, проходящие периодическую проверку своей работоспособности в МЕТРОЛОГИИ и внесённые в Реестр средств измерения России, выпускаются многими производителями, но лучше всего зарекомендовали себя гарантировано безопасные и надёжные модели измерительного прибора. Менее популярные у потребителей, но хорошо зарекомендовавшие себя модели цифровых и аналоговых мегаомметров. Таблица 3 - Характеристики цифровых и аналоговых мегаомметров Мегаомметр — безусловно, один из самых необходимых приборов в работе с высоковольтным оборудованием. К выбору модели и, главное, к правилам безопасности его использования следует относиться с максимальной ответственностью. ЗаключениеИзмерения играют важную роль в жизни человека. С измерениями он встречается на каждом шагу своей деятельности, начиная от определения расстояний на глаз и заканчивая контролем сложных технологических процессов и выполнением научных исследований. Развитие науки неразрывно связано с прогрессом в области измерений. Измерения - один из способов познания. Поэтому многие научные исследования сопровождаются измерениями, позволяющими установить количественные соотношения и закономерности изучаемых явлений. Д.И.Менделеев писал: "Наука начинается с тех пор, как начинают измерять; точная наука немыслима без меры". История науки знает примеры, говорящие о том, что прогресс в области измерений способствовал новым открытиям. В свою очередь, достижения науки способствовали совершенствованию методов и средств измерений. Например, достижения в области техники позволили создать новые электроизмерительные приборы . Как бы старательно измерения и измерительные приборы ни производились при их повторении, в условиях эксперимента всегда видны одни и те же, неидентичные результаты. Сделанные наблюдения требуют математической обработки, иногда очень сложной; только после этого найденные значения можно использовать для определенных выводов. Цель изучения электроизмерительных приборов - получение будущим инженером необходимого минимума теоретических знаний о методах измерения, устройстве и принципе действия современных приборов и электронных устройств, используемых в современной электротехнике, а также получение практических знаний и навыков. в работе с измерительным оборудованием. Список использованных источниковКотур В.И. и др. Электрические измерения и электроизмерительные приборы. -М.: Энергоатомиздат, 2005. Любимов Л.И., Форсилова И.Д., Шапиро Е.З. Поверка средств электрических измерений. -М.: Энергоатомиздат 2004. Акнаев Р.Ф., Любимов Л.И., Панасюк-Мирович А.М., Поверка средств измерений электрических и магнитных величин. Учебное пособие. - М.: Издательство стандартов, 2006. Гордов А.Н„ Жагулло О.М., Иванова А.Г. Основы температурных измерений. - М.: Энергоатомиздат, 2002. Фарзане Н.Г. и др. Технологические измерения и приборы. - М.: Высшая школа, 1989. Электрические измерения (с лабораторными работами). /Под ред. В.Я. Малиновского. -М.: Энергоатомиздат, 2002. Электрические измерения электрических и неэлектрических величин /Под ред. Е.С. Полищука. Киев: Вища школа. Головное издательство, 2003. Электрические измерения. Под ред. Фремке А.В. и Душина Е.М. -Л.: Энергия, 2007. Ф. Мейзда Электронные измерительные приборы и методы измерений. -М.: Мир, 2008. |