Работа. Т.9.Селекция. Н. И. Вавилова о центрах многообразия и происхождения культурных растений Методы селекции
Скачать 0.99 Mb.
|
Тема 9. Генетика – теоретическая основа селекции 1.Генетика – теоретическая основа селекции 2.Учение Н.И. Вавилова о центрах многообразия и происхождения культурных растений 3.Методы селекции растений, животных и микроорганизмов. 4. Биотехнология, её достижения и перспективы Селекция: основные методы и достижения Селекция (от лат. selectio – отбор) – наука о создании новых и улучшении существующих сортов растений, пород животных и штаммов микроорганизмов. Одновременно под селекцией понимают и сам процесс создания сортов, пород и штаммов. Теоретической основой селекции является генетика. В настоящее время из всего растительного многообразия человек возделывает в качестве культурных растений около 150 видов, а из многих десятков тысяч видов позвоночных животных человек одомашнил лишь около 20. Центры происхождения культурных растений. Большой вклад в изучение происхождения культурных растений внёс выдающийся российский генетик и селекционер Николай Иванович Вавилов. Совершив в начале XX в. более 60 экспедиций по всему миру, Вавилов с коллегами обнаружил, что в определённых районах земного шара сконцентрировано наибольшее разнообразие сортов того или иного культурного растения. Например, для картофеля максимум генетического разнообразия связан с Южной Америкой, больше всего сортов риса было обнаружено в Китае и Японии, а кукурузы – в Мексике. Проанализировав результаты поездок, Вавилов пришёл к выводу, что районы максимального разнообразия являются центрами происхождения данной культуры и, как правило, связаны с древними очагами земледельческих цивилизаций. Вавилов выделил семь основных таких центров. В ходе экспедиций была собрана уникальная коллекция семян растений, которая в дальнейшем постоянно пополнялась и изучалась сотрудниками Всесоюзного института растениеводства в Санкт-Петербурге, который сейчас носит имя Н. И. Вавилова. В настоящее время она насчитывает более 300 тыс. видов, сортов и форм. Начиная работу по созданию нового сорта растений, селекционер может подобрать из имеющегося богатейшего исходного материала те образцы, которые максимально полно обладают интересующими его признаками. Сорт и порода. В современных условиях развития общества важное значение имеет интенсификация сельскохозяйственного производства, т. е. получение максимального количества продукции при минимальных затратах. С этой целью создаются высокопродуктивные породы животных и сорта растений, устойчивые к экстремальным условиям среды, к болезням и вредителям, обладающие определёнными необходимыми качествами. Порода, сорт или штамм – это совокупность особей одного вида, искусственно созданная человеком и характеризующаяся определёнными наследственными свойствами. Все организмы, составляющие такую совокупность, обладают сходными, наследственно закреплёнными морфологическими и физиологическими свойствами и способны максимально проявлять свои качества в тех условиях, для которых они были созданы. Такса может быть прекрасной норной охотничьей собакой, но в качестве гончей её использовать бессмысленно. Точно так же борзая, легко настигающая зайца, будет плохим охранником по сравнению с немецкой овчаркой. Рис. Центры происхождения культурных видов растений (по Н. И. Вавилову) Создавая определённые породы животных, мы часто обрекаем их на необходимость постоянного сосуществования с человеком. Корова, дающая 10 тыс. литров молока в год, погибнет в течение нескольких дней, если её не будут доить. Основные методы селекции. Основными методами селекции являются отбор и гибридизация. 1.Отбор. Отбор бывает массовым и индивидуальным. Массовый отбор проводится по внешним, фенотипическим признакам и, как правило, используется в растениеводстве при работе с перекрёстноопыляющимися растениями (рожь, кукуруза, подсолнечник и др.). Из огромного количества растений отбирается группа лучших по определённым свойствам растений. Их семена на следующий год высевают и из полученного потомства вновь отбирают лучшие растения, семенами которых засевают новое поле. Если продуктивность и другие признаки популяции улучшились, можно считать, что массовый отбор по фенотипу был эффективен. Таким способом выведены многие сорта культурных растений. В отличие от массового при индивидуальном отборе выбирают отдельных особей и потомство каждой из них изучают в ряду поколений. Это позволяет достаточно точно оценить генотип каждого родительского организма и выбрать для дальнейшей работы те особи, которые оказываются наиболее оптимальными по сочетанию полезных для человека признаков и свойств. Сорта и породы, получаемые в результате индивидуального отбора, отличаются высокой однородностью и постоянством признаков. 2.Гибридизация. Наряду с отбором важным методом селекции является гибридизация (скрещивание). Гибридизация может быть близкородственной, которая позволяет редким генам проявиться в гомозиготном состоянии и тем самым выявить скрытые рецессивные аллели, и неродственной, используемой для того, чтобы объединить в одном организме признаки различных сортов, пород, а иногда даже видов и родов. Близкородственная гибридизация (инбридинг) переводит большинство рецессивных аллелей в гомозиготное состояние, из-за чего они начинают проявляться в фенотипе. Любой организм всегда содержит в своём генотипе рецессивные гены в скрытом состоянии (Aa ). Если среди них есть гены, снижающие жизнеспособность, то повторяющийся инбридинг, переводя эти гены в гомозиготное состояние, может привести к вырождению породы или сорта. Эта закономерность справедлива и для людей, практикующих близкородственные браки. Известно немало семей, которые заключали браки только с близкими родственниками, с каждым поколением увеличивая число наследственных болезней. Так, например, выродилась и вымерла испанская королевская династия Габсбургов. Конечно, редкие рецессивные аллели могут оказаться и полезными, в этом случае проявление их в гомозиготной форме может увеличить жизнеспособность, выносливость или другие полезные качества их обладателя. Если такое случается, то селекционеры намеренно используют инбридинг в новой выводимой ими породе, что позволяет сохранить обнаруженный оригинальный или полезный признак. Неродственную гибридизацию (аутбридинг ) подразделяют на внутривидовую и отдалённую. Рис. Культурные разновидности капусты и их дикий предок В основе внутривидовой гибридизации лежит направленное скрещивание особей, обладающих определёнными свойствами, с целью получения потомства с максимальным проявлением этих качеств. Например, один сорт растений обладает высокой продуктивностью, но легко заражается грибковыми болезнями, а другой, обладая высокой устойчивостью к заболеваниям, производит гораздо меньше семян. Скрещивая эти два сорта, в потомстве можно получить различные сочетания признаков, среди которых будут высокопродуктивные и одновременно устойчивые к заражению растения. Рис. Лигры – межвидовые гибриды между львом и тигрицей – выглядят как огромные львы с размытыми полосами. Лигр-самка (слева) и лигр-самец (справа) Отдалённая гибридизация заключается в скрещивании разных видов (рис. 105). В растениеводстве с помощью отдалённой гибридизации создана новая зерновая культура – тритикале, гибрид ржи с пшеницей. Эта культура сочетает многие свойства пшеницы (высокие хлебопекарные качества) и ржи (способность расти на бедных песчаных почвах). Классическим примером межвидовых гибридов в животноводстве является мул, полученный при скрещивании осла с кобылицей, который значительно превосходит родителей по выносливости и работоспособности. В Казахстане при скрещивании диких горных баранов-архаров с тонкорунными овцами была создана знаменитая архаромериносная порода овец. Однако применение межвидовых скрещиваний имеет определённые сложности, потому что получаемые гибриды часто оказываются бесплодными (стерильными) или низкоплодовитыми. Стерильность гибридов связана с отсутствием у них парных гомологичных хромосом. Это делает невозможным процесс конъюгации. Следовательно, мейоз не может завершиться, и половые клетки не образуются. Известный российский учёный Георгий Дмитриевич Карпеченко (1899–1942) впервые предложил способ восстановления плодовитости у отдалённых растительных гибридов методом полиплоидии. При скрещивании разных пород животных или сортов растений, а также при межвидовых скрещиваниях в первом поколении у гибридов повышается жизнеспособность и наблюдается мощное развитие. Явление превосходства гибридов по своим свойствам родительских форм получило название гетерозиса , или гибридной силы. Нередко в растениеводстве получают и полиплоидные растения, отличающиеся более крупными размерами, высокой урожайностью и более активным синтезом органических веществ. Широко распространены полиплоидные сорта клевера, сахарной свёклы, ржи, гречихи. В настоящее время человечество использует для сельскохозяйственного производства около 10 % всей поверхности суши. Увеличивать эту долю уже невозможно, потому что практически все резервы исчерпаны. Тем большее значение приобретает селекционная работа учёных, которые, опираясь на основные закономерности наследственности и изменчивости, создают новые высокопродуктивные породы и сорта. В последние годы селекция активно вводит в практику приёмы и методы генной и клеточной инженерии. Биотехнология: достижения и перспективы развития Биотехнология – это использование организмов, биологических систем или биологических процессов в промышленном производстве. Термин «биотехнология» получил широкое распространение с середины 70-х гг. XX в., хотя ещё с незапамятных времён человечество использовало микроорганизмы в хлебопечении и виноделии, при производстве пива и в сыроварении. Любое производство, в основе которого лежит биологический процесс, можно рассматривать как биотехнологию. Генная, хромосомная и клеточная инженерия, клонирование сельскохозяйственных растений и животных – это различные аспекты современной биотехнологии. Биотехнология позволяет не только получать важные для человека продукты, например антибиотики и гормон роста, этиловый спирт и кефир, но и создавать организмы с заранее заданными свойствами гораздо быстрее, чем с помощью традиционных методов селекции. Существуют биотехнологические процессы по очистке сточных вод, переработке отходов, удалению нефтяных разливов в водоёмах, получению топлива. Эти технологии основаны на особенностях жизнедеятельности некоторых микроорганизмов. Появляющиеся современные биотехнологии изменяют наше общество, открывают новые возможности, но одновременно создают определённые социальные и этические проблемы. Генная инженерия. Удобными объектами биотехнологии являются микроорганизмы, имеющие сравнительно просто организованный геном, короткий жизненный цикл и обладающие большим разнообразием физиологических и биохимических свойств. Одной из причин сахарного диабета является недостаток в организме инсулина – гормона поджелудочной железы. Инъекции инсулина, выделенного из поджелудочных желез свиней и крупного рогатого скота, спасают миллионы жизней, однако у некоторых пациентов приводят к развитию аллергических реакций. Оптимальным решением было бы использование человеческого инсулина. Методами генной инженерии ген инсулина человека был встроен в ДНК кишечной палочки. Бактерия начала активно синтезировать инсулин. В 1982 г. инсулин человека стал первым фармацевтическим препаратом, полученным с помощью методов генной инженерии. CRISPR/Cas9 — это метод, который позволяет осуществлять высокоточную и быструю модификацию ДНК в геноме, с его помощью может быть задан любой набор генетических инструкций в организме. Одна из создателей CRISPR французский генетик Emmanuelle Marie Charpentier описывает технологию так: Представьте себе текст со словами и программное обеспечение, которое позволяет заменять буквы в тексте с большой точностью, удалять слово или несколько слов, заменять их на другие. Иными словами — это инструмент для редактирования текста, который работает с большой точностью, только все это происходит с нашими ДНК и генами. Это похоже на программируемые ножницы, которые способны распознавать определенные места ДНК и изменять их. Желтым цветом на карте отмечены страны, которые в настоящее время выращивают ГМО-культуры; темно-серым цветом — страны, прекратившие возделывания ГМО-культур; светло-серым цветом - страны, где никогда не были разрешены ГМО-культуры. Аналогичным способом в настоящее время получают гормон роста. Человеческий ген, встроенный в геном бактерий, обеспечивает синтез гормона, инъекции которого используются при лечении карликовости и восстанавливают рост больных детей почти до нормального уровня. Так же как у бактерий, с помощью методов генной инженерии можно изменять и наследственный материал эукариотических организмов. Такие генетически перестроенные организмы называют трансгенными или генетически модифицированными организмами (ГМО). В природе существует бактерия, которая выделяет токсин, убивающий многих вредных насекомых. Ген, отвечающий за синтез этого токсина, был выделен из генома бактерии и встроен в геном культурных растений. К настоящему времени уже созданы устойчивые к вредителям сорта кукурузы, риса, картофеля и других сельскохозяйственных растений. Выращивание таких трансгенных растений, которые не требуют использования пестицидов, имеет огромные преимущества, потому что, во-первых, пестициды убивают не только вредных, но и полезных насекомых, а во-вторых, многие пестициды накапливаются в окружающей среде и оказывают мутагенное влияние на живые организмы. Один из первых успешных экспериментов по созданию генетически модифицированных животных был произведён на мышах, в геном которых был встроен ген гормона роста крыс. В результате трансгенные мыши росли гораздо быстрее и в итоге были в два раза больше обычных мышей. Если этот опыт имел исключительно теоретическое значение, то эксперименты в Канаде имели уже явное практическое применение. Канадские учёные ввели в наследственный материал лосося ген другой рыбы, который активировал ген гормона роста. Это привело к тому, что лосось рос в 10 раз быстрее и набирал вес, в несколько раз превышающий норму. Клонирование. Создание многочисленных генетических копий одного индивидуума с помощью бесполого размножения называют клонированием. У ряда организмов этот процесс может происходить естественным путём, вспомните вегетативное размножение у растений и фрагментацию у некоторых животных. Если у морской звезды случайно оторвётся кусочек луча, из него образуется новый полноценный организм. У позвоночных животных этот процесс естественным путём не происходит. Впервые успешный эксперимент по клонированию животных был осуществлён исследователем Гёрдоном в конце 60-х гг. XX в. в Оксфордском университете. Учёный пересадил ядро, взятое из клетки эпителия кишки лягушки-альбиноса, в неоплодотворённую яйцеклетку обычной лягушки, чьё ядро перед этим было разрушено. Из такой яйцеклетки учёному удалось вырастить головастика, превратившегося затем в лягушку, которая была точной копией лягушки-альбиноса. Таким образом, впервые было показано, что информации, содержащейся в ядре любой клетки, достаточно для развития полноценного организма. В дальнейшем исследования, проведённые в Шотландии в 1996 г., привели к успешному клонированию овцы Долли из клетки эпителия молочной железы матери. После Долли по этой технологии клонировали множество животных: корову, кошку, оленя, собаку, лошадь, мула, вола, свинью, кролика, крыс и мышей, козла, волка. В 2018 году эксперимент китайских учёных закончился созданием двух длиннохвостых макак: Зонг Зонг и Хуа Хуа. Клонирование представляется перспективным методом в животноводстве. Например, при разведении крупного рогатого скота используется следующий приём. На ранней стадии развития, когда клетки эмбриона ещё не специализированы, зародыш разделяют на несколько частей. Из каждого фрагмента, помещённого в приёмную (суррогатную) мать, может развиться полноценный телёнок. Таким способом можно создать множество идентичных копий одного животного, обладающего ценными качествами. Для специальных целей можно также клонировать отдельные клетки, создавая культуры тканей, которые в подходящих средах способны расти бесконечно долго. Клонированные клетки служат заменой лабораторным животным, так как на них можно изучать воздействие на живые организмы различных химических веществ, например лекарственных препаратов. При клонировании растений используется уникальная особенность растительных клеток. В начале 60-х гг. XX в. впервые было показано, что клетки растений, даже после достижения зрелости и специализации, в подходящих условиях способны давать начало целому растению. Поэтому современные методы клеточной инженерии позволяют осуществлять селекцию растений на клеточном уровне, т. е. отбирать не взрослые растения, обладающие теми или иными свойствами, а клетки, из которых потом выращивают полноценные растения. Этические аспекты развития биотехнологии. Страны ООН приняли соответствующий Протокол в 2001 году (репродуктивное клонирование запрещено). В Европе существует единственный на сегодняшний день международный акт, устанавливающий запрет клонирования человека – Дополнительный протокол о запрете клонирования человека 1998 г. к Конвенции Совета Европы о правах человека в биомедицине 1996 г. Использование современных биотехнологий ставит перед человечеством много серьёзных вопросов. Не может ли ген, встроенный в трансгенные растения томата, при съедании плодов мигрировать и встраиваться в геном, например, бактерий, живущих в кишечнике человека? Не может ли трансгенное культурное растение, устойчивое к гербицидам, болезням, засухе и другим стрессовым факторам, при перекрёстном опылении с родственными дикими растениями передать эти же свойства сорнякам? Не получатся ли при этом «суперсорняки», которые очень быстро заселят сельскохозяйственные земли? Не попадут ли случайно мальки гигантского лосося в открытое море и не нарушит ли это баланс в природной популяции? Способен ли организм трансгенных животных выдержать ту нагрузку, которая возникает в связи с функционированием чужеродных генов? И имеет ли право человек переделывать живые организмы ради собственного блага? Эти и многие другие вопросы, связанные с созданием генетически модифицированных организмов, широко обсуждаются специалистами и общественностью всего мира. Созданные во всех странах специальные контролирующие органы и комиссии утверждают, что, несмотря на существующие опасения, вредного воздействия ГМО на природу зафиксировано не было. В 1996 г. Совет Европы принял Конвенцию о правах человека при использовании геномных технологий в медицине. Основное внимание в документе уделено этике применения таких технологий. Утверждается, что ни одна личность не может быть подвергнута дискриминации на основе информации об особенностях её генома. Введение в клетки человека чужеродного генетического материала может иметь отрицательные последствия. Неконтролируемое встраивание чужой ДНК в те или иные участки генома может привести к нарушению работы генов. Риск использования генотерапии при работе с половыми клетками гораздо выше, чем при использовании соматических клеток. При внесении генетических конструкций в половые клетки может возникнуть нежелательное изменение генома будущих поколений. Поэтому в международных документах ЮНЕСКО, Совета Европы, Всемирной организации здравоохранения (ВОЗ) подчёркивается, что всякое изменение генома человека может производиться лишь на соматических клетках. Но, пожалуй, наиболее серьёзные вопросы возникают в связи с теоретически возможным клонированием человека. Исследования в области человеческого клонирования сегодня запрещены во всех странах в первую очередь по этическим соображениям. Становление человека как личности базируется не только на наследственности. Оно определяется семейной, социальной и культурной средой, поэтому при любом клонировании воссоздать личность невозможно, как невозможно воспроизвести все те условия воспитания и обучения, которые сформировали личность его прототипа (донора ядра). Все крупные религиозные конфессии мира осуждают любое вмешательство в процесс воспроизводства человека, настаивая на том, что зачатие и рождение должны происходить естественным путём. Эксперименты по клонированию животных поставили перед научной общественностью ряд серьёзных вопросов, от решения которых зависит дальнейшее развитие этой области науки. Овечка Долли не была единственным клоном, полученным шотландскими учёными. Клонов было несколько десятков, а в живых осталась только Долли. В последние годы совершенствование техники клонирования позволило увеличить процент выживших клонов, но их смертность всё ещё очень высока. Однако существует проблема, ещё более серьёзная с научной точки зрения. Несмотря на победное рождение Долли, остался неясным её реальный биологический возраст, связанные с ним проблемы со здоровьем и относительно ранняя смерть. По мнению учёных, использование ядра клетки немолодой шестилетней овцы-донора сказалось на судьбе и здоровье Долли. Необходимо существенно повысить жизнеспособность клонированных организмов, выяснить, влияет ли использование конкретных методик на продолжительность жизни, здоровье и плодовитость животных. Очень важно свести к минимуму риск дефектного развития реконструированной яйцеклетки. Активное внедрение биотехнологий в медицину и генетику человека привело к появлению специальной науки – биоэтики. Биоэтика – наука об этичном отношении ко всему живому, в том числе и к человеку. Нормы этики выдвигаются сейчас на первый план. Те нравственные заповеди, которыми человечество пользуется века, к сожалению, не предусматривают новых возможностей, привносимых в жизнь современной наукой. Поэтому людям необходимо обсуждать и принимать новые законы, учитывающие новые реальности жизни. ВСЕ НОВОСТИ С ТЕГОМ КЛОНИРОВАНИЕ 20 февраля 2021 03:06 Ученые в США впервые успешно клонировали хорька вымирающего вида 7 сентября 2020 09:42 В США клонировали умершую 22 года назад лошадь Пржевальского 30 марта 2020 17:03 В Китае выпустили «клон» Toyota Land Cruiser 10 октября 2019 06:58 Первая в мире появившаяся в результате клонирования корова умерла в Японии 20 августа 2019 07:31 Компания Sinogene в Китае собирается начать массовую продажу клонированных котов 17 апреля 2019 17:13 В Якутии клонируют жеребенка возрастом 42 тыс. лет 24 марта 2019 20:19 Клонированная полицейская собака приступила к тренировкам в Китае 21 марта 2019 08:24 В Китае клонировали полицейскую собаку 24 января 2019 09:19 В Китае появились на свет пять клонированных приматов 26 декабря 2018 14:13 В Китае в 2019 году родится первый клонированный котенок 5 июля 2018 17:36 Биологи нашли способ восстановить популяцию белых носорогов 29 мая 2018 21:36 Способ возродить популяцию северных носорогов нашли в Сан-Диего 02:51 Генетики разрешили клонировать северного белого носорога 28 февраля 2018 02:43 Барбра Стрейзанд дважды клонировала свою умершую собаку 26 января 2018 16:56 Клонировавшие обезьян ученые не намерены применять технологию на людях 25 января 2018 13:31 Китайские генетики клонировали обезьян 24 января 2018 22:38 Китайские ученые впервые клонировали обезьяну по методу овечки Долли |