Главная страница
Навигация по странице:

  • 23. Решение научно-технических проблем освоения космического пространства

  • 24. Информатика в системе наук, становление ее теоретических основ.

  • Основные направления в информатике

  • 25. Информационное общество – история концепции и становление

  • Вторая

  • 26. История доэлектронной информатики. Механические и электромеханические устройства и машины.

  • Аналоговые вычислительные машины (АВМ).

  • Электронные вычислительные машины (ЭВМ).

  • Аналого-цифровые вычислительные машины (АЦВМ).

  • 27. Зарождение электронной информатики

  • Развитие элементной базы компьютеров

  • Появление персональных компьютеров

  • Компьютеры фирмы

  • Все вопросы Мухин. Наука это особый рациональный способ познания мира, основанный на эмпирической проверке или математическом доказательстве


    Скачать 0.71 Mb.
    НазваниеНаука это особый рациональный способ познания мира, основанный на эмпирической проверке или математическом доказательстве
    Дата25.06.2021
    Размер0.71 Mb.
    Формат файлаdoc
    Имя файлаВсе вопросы Мухин.doc
    ТипЗадача
    #221546
    страница19 из 20
    1   ...   12   13   14   15   16   17   18   19   20

    22. Развитие полупроводниковой техники и микроэлектроники.
    Хотя в современном понимании полупроводниковая техника стала развиваться в 40-е годы прошлого века, ее зарождением следует считать 1904 год. Российский физик-экспериментатор О. Лосев впервые в мире создал полупроводниковый детектор на основе галена (сернистый свинец). Он же впервые создал усилительный полупроводниковый прибор на базе цинкита и обнаружил люминесценцию полупроводниковых структур.

    Первый транзистор был создан в 1947 году Дж. Бардином, У. Бреттейном и У. Шокли.

    Это было открытие полупроводниковой эры, родившей огромное количество типов диодов и транзисторов, а позднее интегральных микросхем. Много выдающихся ученых внесли свой вклад в данное направление. Среди них были и российские физики. Следует, однако, признать в этой области лидирующее положение американских ученых.

    В последние годы главенствует направление микроминиатюризации полупроводниковых приборов, что обусловлено бурным развитием средств вычислительной техники. Последние достижения таковы, что ощущается предел движения вперед: в США создан транзистор из одиночной молекулы углерода.

    Микроэлектроника не может существовать как самостоятельная область и не могла бы возникнуть, если бы не было тематических задач, требующих производства миниатюрных приборов. В первую очередь это военная техника – баллистические ракеты, космическое направление, системы реактивного управляемого оружия, которые начали развиваться с 50-х годов. Технология ИС казалась тогда совершенно фантастической и сложной. Требовалось принципиально новое технологическое оборудование, совершенно иные подходы к организации производственных процессов.

    За рубежом микроэлектронная технология распространялась сразу – там многие фирмы создавали собственные интегральные полупроводниковые производства, полностью замыкая цикл выпуска изделий.

    Интенсивное развитие микроэлектроники и повышения степени интеграции открыли новое направление в ВТ - создание микропроцессоров и микрокомпьютеров. Появились вычислительные системы с малым уровнем потребления энергии и универсальными возможностями, которые позволяют решать задачи управления объектами различной физической природы. На основе их применения снижаются затраты на автоматизацию основных технических и вспомогательных процессов. В результате будет решена задача комплексной автоматизации производства во всех отраслях. Это позволит увеличить производительность труда, уменьшить себестоимость выпускаемой продукции и значительно сократить ручные операции в промышленности.

     За время существования корпорации Intel (т.е. с 1968 года) себестоимость производства транзисторов упала до такой степени, что теперь обходится примерно во столько же, сколько стоит напечатать любой типографский знак - например, запятую.

     В процессе разработки микропроцессоров, содержащих один миллиард транзисторов, Intel уменьшила величину транзисторов до такой степени, что теперь на булавочной головке могут разместиться 200 млн транзисторов.

     Современные транзисторы производства корпорации Intel открываются и закрываются со скоростью полтора триллиона раз в секунду. Чтобы включить и выключить электрический выключатель полтора триллиона раз, человеку потребовалось бы 25 тысяч лет.
    23. Решение научно-технических проблем освоения космического пространства
    Быть может, уже много тысяч лет назад, глядя на ночное небо, человек мечтал о полете к звездам. Легенды и мифы всех народов полны рассказов о полете к Луне, Солнцу и звездам. Средства для таких полетов, предлагавшиеся народной фантазией, были примитивны: колесница, влекомая орлами, крылья, прикрепленные к рукам человека.

    В 17 веке появился фантастический рассказ французского писателя Сирано де Бержерака о полете на Луну. Герой этого рассказа добрался до Луны в железной полоске, над которой он все время подбрасывал сильный магнит. Притягиваясь к нему, полоска все выше поднималась над Землей, пока не достигла Луны. «Из пушки на Луну» отправились герои Жюля Верна. Известный английский писатель Герберт Уэльс описал фантастическое путешествие на Луну в снаряде, корпус которого был сделан из материала, не подверженного силе тяготения.

    Предлагались разные средства для осуществления космического полета. Писатели фантасты упоминали и ракеты. Однако эти ракеты были технически необоснованной мечтой.

    Идеи К. Циолковского еще долго будут служить основой в освоении человека космического пространства. Циолковский показал, что единственный летательный аппарат, способный проникнуть за атмосферу и даже навсегда покинуть Землю, - это ракета.

    Начало проникновения человека в космос было положено 4 октября 1957 года. В этот день вышел на орбиту запущенный в СССР первый в истории человечества искусственный спутник Земли. Он весил 86,3 кг. Он вынес в околоземное пространство научные приборы и радиопередатчики, которые передали на Землю первую научную информацию о космическом пространстве, окружающем Землю.

    Первый спутник начал обращаться вокруг Земли по эллиптической орбите. Через 20 дней иссякли батареи его передатчиков. Постепенно опускаясь, он просуществовал еще около двух с половиной месяцев и сгорел в нижних, более плотных слоях атмосферы.

    Тщательно изучив постепенное изменение орбиты за счет торможения в атмосфере, ученые смогли рассчитать плотность атмосферы на всех высотах, где пролетел спутник, и по этим данным более точным предусмотреть изменение орбит последующих спутников.

    Определение точной траектории искусственных спутников позволило провести ряд геофизических исследований, уточнить форму Земли, точнее изучить ее сплюснутость, что дает возможность составлять более точные географические карты. Ученые уточнили сведения о поле земного тяготения и о строении земной коры. Очень большое значение имело изучение прохождения радиоволн через ионосферу, т.е. через наэлектризованные верхние слои земной атмосферы. Радиоволны, посланные со спутника, как бы насквозь прощупывали ионосферу. Анализ этих результатов позволил существенно уточнить строение газовой оболочки земли. Вслед за советскими спутниками вышли на свои орбиты американские спутники.

    Прочно овладев техникой запуска автоматических аппаратов, советские ученые приступили к созданию космического корабля для полетов человека.

    Десятки неразрешенных вопросов стояли перед наукой. Надо было создать во много раз более мощные ракеты-носители для выведения па орбиту космических кораблей, в несколько раз более тяжелых, чем самые тяжелые искусственные спутники, запущенные ранее. Нужно было сконструировать и построить летательные аппараты, не только полностью обеспечивающие безопасность космонавта на всех этапах полета, но и создающие необходимые условия для его жизни и работы. Необходимо было разработать целый комплекс специальной тренировки, который позволил бы организму будущих космонавтов заранее приспособиться к существованию в условиях перегрузок и невесомости.

    После ряда пробных запусков, когда места в кабине спутника занимали различные живые существа - от грибков и бактерий до известных всему миру Белки и Стрелки,- конструкция космического корабля со всеми его сложными системами выведения на орбиту, стабилизации полета и обратного спуска на Землю была полностью отработана.

    12 апреля 1961 г. ушел в космос корабль «Восток» с первым в истории человечества летчиком-космонавтом на борту Юрием Гагариным. Облетев земной шар, он через 1 час 48 минут благополучно приземлился в заданном районе Советского Союза. 6 августа того же года стартовал космический корабль «Восток-2» с летчиком-космонавтом Германом Титовым. Тщательное изучение научных данных, полученных в этих двух полетах, позволило уже через год - в августе 1962 г.- сделать новый большой шаг вперед. Стартовавшие один за другим (с интервалом в одни сутки) космические корабли «Восток-3» и «Восток-4» совершили первый групповой полет в космос. Этот полет доказал, что разработанная нашими учеными система подготовки космонавтов позволяет им выработать такие физические качества, которые обеспечивают нормальную жизнедеятельность и полную работоспособность в условиях длительного космического полета. В этом состоял главный итог полета.

    Наряду с полетами космических кораблей в СССР и США были осуществлены и пробные запуски ракет к планетам. 12 февраля 1961 г. с борта искусственного спутника Земли в сторону Венеры стартовала советская автоматическая межпланетная станция «Венера». Вслед за ней к Венере была запущена американская автоматическая станция «Маринер-2».

    Новым этапом в исследовании Вселенной явился запуск 12 октября 1964 г. в СССР трехместного корабля «Восход». Корабль «Восход» существенно отличается от кораблей типа «Восток». Его орбита пролегала выше, космонавты впервые совершали полет без скафандров, а приземлились, не покидая кабину, которая системой «мягкой посадки» была плавно спущена и буквально мягко «поставлена» на поверхность Земли. Новая система телевидения передавала с борта корабля не только изображение космонавтов, но и картину наблюдений.

    С каждым годом ширится фронт мирных исследований космического пространства. Вслед за спутниками, «жестко» привязанными к своим орбитам, в космос вышли аппараты, способные осуществлять достаточно широкое маневрирование.

    Советские космические аппараты «Полет-1» и «Полет-2», маневрируя в космосе, переходили с орбиты на орбиту, меняя не только высоту, но и плоскость наклона орбиты. Это первые шаги на пути соединения, или, как говорят инженеры, стыковки, космических кораблей непосредственно в космосе, на орбите. Причаливая к кораблю, ракеты-заправщики могут перегружать на него горючее и строительные детали.

    Мирным целям успешно служат и некоторые американские спутники. С помощью метеорологических спутников американцам удалось заблаговременно предупредить население о приближении нескольких тайфунов - сильнейших разрушительных ураганов, очень часто проносящихся над Америкой.

    Спутники «Телестар-1» и «Телестар-2» успешно перекинули телевизионный «мост» между Европой и Америкой, ретранслируя из Америки в Европу телевизионные программы. Проведен международный космический эксперимент: радиоволны, посланные из английской обсерватории, отразившись от огромного надутого металлизированного шара - американского спутника «Эхо-2»,- были приняты в СССР под Горьким. Были переданы радиотелеграммы, фототелеграммы и радиотелефонный разговор.

    После неудачных попыток в выведении тяжелых кораблей-спутников американцам в 1964 г. удалось запустить два многотонных спутника.

    С каждым днем все более расширяется сфера прикладного использования космонавтики.

    Служба погоды, навигация, спасение людей и спасение лесов, всемирное телевидение, всеобъемлющая связь, сверхчистые лекарства и полупроводники с орбиты, самая передовая технология - это уже и сегодняшний день, и очень близкий завтрашний день космонавтики. А впереди - электростанции в космосе, удаление вредных производств с поверхности планеты, заводы на околоземной орбите и Луне.

    Вселенная, изучаемая астрономией, - часть материального мира, которая доступна исследованию астрономическими средствами, соответствующими достигнутому уровню развития науки.

    Часто выделяют ближний космос, исследуемый при помощи космических аппаратов и межпланетных станций, и дальний космос – мир звезд и галактик.

    Изучение и исследование космоса становится одной из самых актуальных тем в наше время. Во многих странах ведутся работы и создаются краткосрочные и долгосрочные программы. В них подробно и на много лет вперед расписаны планируемые мероприятия, прогнозируются ожидаемые результаты. В соответствии с такой программой становятся зримыми и сроки космической деятельности россиян, включая и освоение ближайших планет Солнечной системы:

    • 2005-2020 годы – новое поколение международных систем связи, телевещания предупреждения о стихийных бедствиях;

    • 2010-2015 годы – полупромышленное производство уникальных материалов в космосе;

    • 2010-2025 годы – промышленное удаление с орбит космического мусора;

    • 2015-2040 годы – пилотируемые экспедиции к Марсу и другим планетам;

    • 2020-2050 годы система глобальной военной безопасности;

    • 2020-2040 годы – системы для передачи энергии на Землю для обеспечения и освещения полярных районов и городов.

    Существуют и более долгосрочные программы поэтапного освоения Космоса. Они рассчитаны, главным образом, на будущие поколения землян и носят во многом гипотетический характер.

    24. Информатика в системе наук, становление ее теоретических основ.
    Термин информатика возник в 60-х гг. во Франции для названия области, занимающейся автоматизированной обработкой информации с помощью электронных вычислительных машин. Французский термин informatigue (информатика) образован путем слияния слов information (информация) и automatigue (автоматика) и означает "информационная автоматика или автоматизированная переработка информации". В англоязычных странах этому термину соответствует синоним computer science (наука о компьютерной технике).

    Выделение информатики как самостоятельной области человеческой деятельности в первую очередь связано с развитием компьютерной техники. Причем основная заслуга в этом принадлежит микропроцессорной технике, появление которой в середине 70-х гг. послужило началом второй электронной революции. С этого времени элементной базой вычислительной машины становятся интегральные схемы и микропроцессоры, а область, связанная с созданием и использованием компьютеров, получила мощный импульс в своем развитии. Термин "информатика" приобретает новое дыхание и используется не только для отображения достижений компьютерной техники, но и связывается с процессами передачи и обработки информации.

    В нашей стране подобная трактовка термина "информатика" утвердилась с момента принятия решения в 1983 г. на сессии годичного собрания Академии наук СССР об организации нового отделения информатики, вычислительной техники и автоматизации. Информатика трактовалась как "комплексная научная и инженерная Дисциплина, изучающая все аспекты разработки, проектирования, создания, оценки, функционирования основанных на ЭВМ систем переработки информации, их применения и воздействия на различные области социальной практики".

    Информатика в таком понимании нацелена на разработку общих методологических принципов построения информационных моделей. Поэтому методы информатики применимы всюду, где существует возможность описания объекта, явления, процесса и т.п. с помощью информационных моделей.

    Существует множество определений информатики, что связано с многогранностью ее функций, возможностей, средств и методов. Обобщая опубликованные в литературе по информатике определения этого термина Информатика — это область человеческой деятельности, связанная с процессами преобразования информации с помощью компьютеров и их взаимодействием со средой применения.

    Часто возникает путаница в понятиях "информатика" и "кибернетика".

    Основная концепция, заложенная Н. Винером в кибернетику, связана с разработкой теории управления сложными динамическими системами в разных областях человеческой деятельности. Кибернетика существует независимо от наличия или отсутствия компьютеров.

    Кибернетика — это наука об общих принципах управления в различных системах: технических, биологических, социальных и др.

    Информатика занимается изучением процессов преобразования и создания новой информации более широко, практически не решая задачи управления различными объектами, как кибернетика. Поэтому может сложиться впечатление об информатике как о более емкой дисциплине, чем кибернетика. Однако, с другой стороны, информатика не занимается решением проблем, не связанных с использованием компьютерной техники, что, несомненно, сужает ее, казалось бы, обобщающий характер. Между этими двумя дисциплинами провести четкую границу не представляется возможным в связи с ее размытостью и неопределенностью, хотя существует довольно распространенное мнение, что информатика является одним из направлений кибернетики.

    Информатика появилась благодаря развитию компьютерной техники, базируется на ней и совершенно немыслима без нее. Кибернетика же развивается сама по себе, строя различные модели управления объектами, хотя и очень активно использует все достижения компьютерной техники. Кибернетика и информатика, внешне очень похожие дисциплины, различаются, скорее всего, в расстановке акцентов:

    • в информатике

    — на свойствах информации и аппаратно-программных средствах ее обработки;

    • в кибернетике

    — на разработке концепций и построении моделей объектов с использованием, в частности, информационного подхода.

    СТРУКТУРА ИНФОРМАТИКИ

    Информатика в широком смысле представляет собой единство разнообразных отраслей науки, техники и производства, связанных с переработкой информации главным образом с помощью компьютеров и телекоммуникационных средств связи во всех сферах человеческой деятельности.

    Информатику в узком смысле можно представить как состоящую из трех взаимосвязанных частей — технических средств (hardware), программных средств (software), алгоритмических средств (brainware). В свою очередь, информатику как в целом, так и каждую ее часть обычно рассматривают с разных позиций: как отрасль народного хозяйства, как фундаментальную науку, как прикладную дисциплину.

    Информатика как отрасль народного хозяйства состоит из однородной совокупности предприятий разных форм хозяйствования, где занимаются производством компьютерной техники, программных продуктов и разработкой современной технологии переработки информации. Специфика и значение информатики как отрасли производства состоят в том, что от нее во многом зависит рост производительности труда в других отраслях народного хозяйства. Более того, для нормального развития этих отраслей производительность труда в самой информатике должна возрастать более высокими темпами, так как в современном обществе информация все чаще выступает как предмет конечного потребления: людям необходима информация о событиях, происходящих в мире, о предметах и явлениях, относящихся к их профессиональной деятельности, о развитии науки и самого общества. Дальнейший рост производительности труда и уровня благосостояния возможен лишь на основе использования новых интеллектуальных средств и человеко-машинных интерфейсов, ориентированных на прием и обработку больших объемов мультимедийной информации (текст, графика, видеоизображение, звук, анимация). При отсутствии достаточных темпов увеличения производительности труда в информатике может произойти существенное замедление роста производительности труда во всем народном хозяйстве. В настоящее время около 50% всех рабочих мест в мире поддерживается средствами обработки информации.

    Информатика как фундаментальная наука занимается разработкой методологии создания информационного обеспечения процессов управления любыми объектами на базе компьютерных информационных систем. Существует мнение, что одна из главных задач этой науки — выяснение, что такое информационные системы, какое место они занимают, какую должны иметь структуру, как функционируют, какие общие закономерности им свойственны. В Европе можно выделить следующие основные научные направления в области информатики: разработка сетевой структуры, компьютерно-интегрированные производства, экономическая и медицинская информатика, информатика социального страхования и окружающей среды, профессиональные информационные системы.

    Цель фундаментальных исследований в информатике — получение обобщенных знаний о любых информационных системах, выявление общих закономерностей их построения и функционирования.

    Информатика как прикладная дисциплина занимается:

    • изучением закономерностей в информационных процессах (накопление, переработка, распространение);

    • созданием информационных моделей коммуникаций в различных областях человеческой деятельности;

    • разработкой информационных систем и технологий в конкретных областях и выработкой рекомендаций относительно их жизненного цикла: для этапов проектирования и разработки систем, их производства, функционирования и т.д.

    Главная функция информатики заключается в разработке методов и средств преобразования информации и их использовании в организации технологического процесса переработки информации.

    Задачи информатики состоят в следующем:

    • исследование информационных процессов любой природы;

    • разработка информационной техники и создание новейшей технологии переработки информации на базе полученных результатов исследования информационных процессов;

    • решение научных и инженерных проблем создания, внедрения и обеспечения эффективного использования компьютерной техники и технологии во всех сферах общественной жизни.

    Информатика существует не сама по себе, а является комплексной научно-технической дисциплиной, призванной создавать новые информационные техники и технологии для решения проблем в других областях. Она предоставляет методы и средства исследования другим областям, даже таким, где считается невозможным применение количественных методов из-за неформализуемости процессов и явлений. Особенно следует выделить в информатике методы математического моделирования и методы распознавания образов, практическая реализация которых стала возможной благодаря достижениям компьютерной техники.

    Комплекс индустрии информатики станет ведущим в информационном обществе. Тенденция ко все большей информированности в обществе в существенной степени зависит от прогресса информатики как единства науки, техники и производства.

    Основные направления в информатике: кибернетика, программирование, вычислительная техника, искусственный интеллект, теоретическая информатика, информационные системы.
    25. Информационное общество – история концепции и становление
    Деятельность отдельных людей, групп, коллективов и организаций сейчас все в большей степени начинает зависеть от их информированности и способности эффективно использовать имеющуюся информацию. Прежде чем предпринять какие-то действия, необходимо провести большую работу по сбору и переработке информации, ее осмыслению и анализу. Отыскание рациональных решений в любой сфере требует обработки больших объемов информации, что подчас невозможно без привлечения специальных технических средств.

    Возрастание объема информации особенно стало заметно в середине XX в. Лавинообразный поток информации хлынул на человека, не давая ему возможности воспринять эту информацию в полной мере. В ежедневно появляющемся новом потоке информации ориентироваться становилось все труднее. Подчас выгоднее стало создавать новый материальный или интеллектуальный продукт, нежели вести розыск аналога, сделанного ранее. Образование больших потоков информации обусловливается:

      • чрезвычайно быстрым ростом числа документов, отчетов, диссертаций, докладов и т.п., в которых излагаются результаты научных исследований и опытно-конструкторских работ;

      • постоянно увеличивающимся числом периодических изданий по разным областям человеческой деятельности;

      • появлением разнообразных данных (метеорологических, геофизических, медицинских, экономических и др.), записываемых обычно на магнитных лентах и поэтому не попадающих в сферу действия системы коммуникации.

    Как результат - наступает информационный кризис, который имеет следующие проявления:

    • появляются противоречия между ограниченными возможностями человека по восприятию и переработке информации и существующими мощными потоками и массивами хранящейся информации. Так, например, общая сумма знаний менялась вначале очень медленно, но уже с 1900 г. она удваивалась каждые 50 лет, к 1950 г. удвоение происходило каждые 10 лет, к 1970 г. - уже каждые 5 лет, с 1990 г. – ежегодно (трудно вообразить, что же будет дальше?);

    • существует большое количество избыточной информации, которая затрудняет восприятие полезной для потребителя информации;

    • возникают определенные экономические, политические и другие социальные барьеры, которые препятствуют распространению информации. Например, по причине соблюдения секретности часто необходимой информацией не могут воспользоваться работники разных ведомств.

    Эти причины породили весьма парадоксальную ситуацию - в мире накоплен громадный информационный потенциал, но люди не могут им воспользоваться в полном объеме в силу ограниченности своих возможностей. Информационный кризис поставил общество перед необходимостью поиска путей выхода из создавшегося положения. Внедрение компьютеров, современных средств переработки и передачи информации в различные сферы деятельности послужило началом нового эволюционного процесса, называемого информатизацией, в развитии человеческого общества, находящегося на этапе индустриального развития.

    В истории развития цивилизации произошло несколько информационных революций – преобразований общественных отношений из-за кардинальных изменений в сфере обработки информации. Следствием подобных преобразований являлось приобретение человеческим обществом нового качества.

    Первая революция связана с изобретением письменности, что привело к гигантскому качественному и количественному скачку. Появилась возможность передачи знаний от поколения к поколениям.

    Вторая (середина XVI в.) вызвана изобретением книгопечатания, которое радикально изменило индустриальное общество, культуру, организацию деятельности.

    Третья (конец XIx в.) обусловлена изобретением электричества, благодаря которому появились телеграф, телефон, радио, позволяющие оперативно передавать и накапливать информацию в любом объеме.

    Четвертая (70-е гг. XX в.) связана с изобретением микропроцессорной технологии и появлением ПК. На микропроцессорах и ИС создаются компьютеры, компьютерные сети, системы передачи данных (информационные коммуникации). Этот период характеризуют три фундаментальные инновации:

    • переход от механических и электрических средств преобразования информации к электронным;

    • миниатюризация всех узлов, устройств, приборов, машин;

    • создание программно-управляемых устройств и процессов.

    Бурное развитие компьютерной техники и информационных технологий послужило толчком к развитию общества, построенного на использовании различной информации и получившего название информационного общества.

    Информационное общество – общество, в котором большинство работающих занято производством, хранением, переработкой и реализацией информации, особенно высшей ее формы – знаний.

    В реальной практике развития науки и техники передовых стран в конце XX в. постепенно приобретает зримые очертания созданная теоретиками картина информационного общества. Прогнозируется превращение всего мирового пространства в единое компьютеризированное и информационное сообщество людей, проживающих в электронных квартирах и коттеджах. Любое жилище оснащено всевозможными электронными приборами и компьютеризированными устройствами. Деятельность людей будет сосредоточена главным образом на обработке информации, а материальное производство и производство энергии будет возложено на машины.

    Ряд ученых выделяют характерные черты информационного общества:

      • решена проблема информационного кризиса, т.е. разрешено противоречие между информационной лавиной и информационным голодом;

      • обеспечен приоритет информации по сравнению с другими ресурсами;

      • главной формой развития станет информационная экономика;

      • в основу общества будут заложены автоматизированные генерация, хранение, обработка и использование знаний с помощью новейшей информационной техники и технологии;

      • информационная технология приобретет глобальный характер, охватывая все сферы социальной деятельности человека;

      • формируется информационное единство всей человеческой цивилизации;

      • с помощью средств информатики реализован свободный доступ каждого человека к информационным ресурсам всей цивилизации;

      • реализованы гуманистические принципы управления обществом и воздействия на окружающую среду.

    Кроме положительных моментов прогнозируются и опасные тенденции:

      • все большее влияние на общество средств массовой информации;

      • информационные технологии могут разрушить частную жизнь людей и организаций; существует проблема отбора качественной и достоверной информации;

      • многим людям будет трудно адаптироваться к среде информационного общества. Существует опасность разрыва между "информационной элитой" (людьми, занимающимися разработкой информационных технологий) и потребителями.

    Ближе всех на пути к информационному обществу стоят страны с развитой информационной индустрией, к числу которых следует отнести США, Японию, Англию, Германию, страны Западной Европы. В этих странах уже давно одним из направлений государственной политики является направление, связанное с инвестициями и поддержкой инноваций в информационную индустрию, в развитие компьютерных систем и телекоммуникаций.

    Одним из критериев перехода общества к постиндустриальной и далее к информационной стадии развития может служить процент населения, занятого в сфере услуг:

    • если в обществе более 50% населения занято в сфере услуг, наступила постиндустриальная фаза его развития;

    • если в обществе более 50% населения занято в сфере информационных услуг, общество стало информационным.

    По мнению ряда авторов, процесс информатизации включает в себя три взаимосвязанных процесса:

    1. медиатизацию - процесс совершенствования средств сбора, хранения и распространения информации;

    2. компьютеризацию - процесс совершенствования средств поиска и обработки информации;

    3. интеллектуализацию - процесс развития способности восприятия и порождения информации, т.е. повышения интеллектуального потенциала общества, включая использование средств искусственного интеллекта.

    Наиболее существенной угрозой переходного периода к информационному обществу является разделение людей на имеющих информацию, умеющих обращаться с ИТ, и не обладающих такими навыками. Пока ИТ будут оставаться в распоряжении небольшой социальной группы, сохраняется угроза существующему механизму функционирования общества.

    Новые ИТ:

    - расширяют права граждан путем предоставления моментального доступа к разнообразной информации;

    - увеличивают возможности людей участвовать в процессе принятия политических решений и следить за действиями правительств;

    - предоставляют возможность активно производить информацию, а не только ее потреблять;

    - обеспечивают средства защиты частной жизни и анонимности личных посланий и коммуникаций.

    В российском информационном законодательстве имеются обширные пробелы – не приняты законы о праве на информацию, об охране персональных данных, о телевидении. Требуют дополнений законы об охране авторских и смежных правах, о средствах массовой информации, об участии в международном информационном обмене.

    Существует три основных способа, которыми страна может увеличить свое национальное богатство: 1) постоянное накопление капитала, 2) военные захваты и территориальные приращения, 3) использование новой технологии, переводящей “нересурсы” в ресурсы. В силу высокого уровня развития технологии в постиндустриальной экономике перевод нересурсов в ресурсы стал основным принципом создания нового богатства.

    Важно понимать, что информация имеет некоторые специфические свойства. Если у меня есть две монеты и я из них отдам кому-нибудь одну монету, у меня останется лишь одна монета. Но если у меня есть некоторое количество информации и ее часть я отдам другому человеку, у меня останется все что было. Но также нужно понимать и то, что информация сама по себе, не одухотворенная человеческой эмоциональностью, не переработанная человеческим разумом не способна двигать вперед человеческую культуру, способствовать прогрессу духа.

    И получая неоспоримые блага, такие как доступность информации, ее быстрое распространение, свободный обмен данными между людьми и др. нельзя не учитывать и возросшие и изменившиеся требования к человеку как члену общества.

    В период перехода к информационному обществу кроме решения описанных выше проблем необходимо подготовить человека к быстрому восприятию и обработке больших объемов информации, овладению им современными средствами, методами и технологией работы. Кроме того, новые условия работы порождают зависимость информированности одного человека от информации, приобретенной другими людьми. Поэтому уже недостаточно уметь самостоятельно осваивать и накапливать информацию, а надо научиться такой технологии работы с информацией, когда подготавливаются и принимаются решения на основе коллективного знания. Это говорит о том, что человек должен иметь определенный уровень культуры по обращению с информацией.
    26. История доэлектронной информатики. Механические и электромеханические устройства и машины.
    С увеличением объёма вычислений появился первый счётный переносной инструмент - “Счёты”.

    В начале 17 века возникла необходимость в сложных вычислениях. Потребовались счётные устройства, способные выполнять большой объём вычислений с высокой точностью. В 1642 г. французский математик Паскаль сконструировал первую механическую счётную машину - “Паскалину”.

    В первой половине XIX в. английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер (Бэббидж называл его Аналитической машиной). Именно Бэббидж впервые додумался до того, что компьютер должен содержать память и управляться с помощью программы. Бэббидж хотел построить свой компьютер как механическое устройство (он должен был приводиться в действие силой пара), а программы собирался задавать посредством перфокарт — карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках). Однако довести до конца эту работу Бэббидж не смог — она оказалась слишком сложной для техники того времени, было не возможно сделать некоторые детали машины.

    Первый реализовал идею перфокарт Холлерит. Он изобрёл машину для обработки результатов переписи населения. В своей машине он впервые применил электричество для расчётов.

    В 1930 г. американский учёный Буш изобрел дифференциальный анализатор - первый в мире компьютер. В 40-ходах XX в. сразу несколько групп исследователей повторили попытку Бэббиджа на основе техники XX в. — электромеханических реле. Некоторые из этих исследователей ничего не знали о работах Бэббиджа и переоткрыли его идеи заново. Первым из них был немецкий инженер Конрад Цузе, который в 1941 г. построил небольшой компьютер на основе нескольких электромеханических реле. Но из-за войны работы Цузе не были опубликованы.

    Большой толчок в развитии вычислительной техники дала вторая мировая война. Военным понадобился компьютер, которым стал “Марк-1” - первый в мире цифровой компьютер (в США в 1943 г создал на одном из предприятий фирмы IBM американец Говард Эйкен). В нём использовалось сочетание электрических сигналов и механических приводов. Размеры: 15 X 2,5 м., 750000 деталей. Мог перемножить два 23-х разрядных числа за 4 с. Он уже позволял проводить вычисления в сотни раз быстрее, чем вручную (с помощью арифмометра), и реально использовался для военных расчетов. Однако электромеханические реле работают весьма медленно и недостаточно надежно. Поэтому начиная с 1943 г. в США группа специалистов под руководством Джона Мочли и Преспера Экерта по заказу военного ведомства США начала конструировать компьютер ENIAC на основе на основе электронных ламп. Созданный ими компьютер работал в тысячу раз быстрее, чем Марк-1. Быстродействие: 5000 операций сложения и 300 операций умножения в секунду. Размеры: 30 м. в длину, объём - 85 м3., вес - 30 тонн. Использовалось 18000 эл. ламп. Однако обнаружилось, что большую часть времени этот компьютер простаивал — ведь для задания метода расчетов (программы) в этом компьютере приходилось в течение нескольких часов или даже нескольких дней подсоединять нужным образом провода. А сам расчет после этого мог занять всего лишь несколько минут или даже секунд.

    Первая машина с хранимой программой - ”Эдсак” - была создана в 1949 г., а в 1951 г. создали машину “Юнивак” - первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.

    Аналоговые вычислительные машины (АВМ).

    В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.

    Достоинства АВМ:

    • высокая скорость решения задач, соизмеримая со скоростью прохождения электрического сигнала;

    • простота конструкции АВМ;

    • лёгкость подготовки задачи к решению;

    • наглядность протекания исследуемых процессов, возможность изменения параметров исследуемых процессов во время самого исследования.

    Недостатки АВМ:

    • малая точность получаемых результатов (до 10%);

    • алгоритмическая ограниченность решаемых задач;

    • ручной ввод решаемой задачи в машину;

    • большой объём задействованного оборудования, растущий с увеличением сложности задачи.

    Электронные вычислительные машины (ЭВМ).

    В отличие от предыдущих машин в ЭВМ числа представляются в виде последовательности цифр. В современных ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.

    ЭВМ разделяются на большие ЭВМ, мини-ЭВМ и микроЭВМ. Они отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.

    Достоинства ЭВМ:

    • высокая точность вычислений;

    • универсальность;

    • автоматический ввод информации, необходимый для решения задачи;

    • разнообразие задач, решаемых ЭВМ;

    • независимость количества оборудования от сложности задачи.

    Недостатки ЭВМ:

    • сложность подготовки задачи к решению (необходимость специальных знаний методов решения задач и программирования);

    • недостаточная наглядность протекания процессов, сложность изменения параметров этих процессов;

    • сложность структуры ЭВМ, эксплуатация и техническое обслуживание;

    • требование специальной аппаратуры при работе с элементами реальной аппаратуры.

    Аналого-цифровые вычислительные машины (АЦВМ).

    АЦВМ - это такие машины, которые совмещают в себе достоинства АВМ и ЭВМ. Они имеют такие характеристики, как быстродействие, простота программирования и универсальность. Основной операцией является интегрирование, которое выполняется с помощью цифровых интеграторов.

    В АЦВМ числа представляются как в ЭВМ (последовательностью цифр), а метод решения задач как в АВМ (метод математического моделирования).
    27. Зарождение электронной информатики
    Эра электронных вычислительных машин началась в 30-х гг. 20 в из-за потребности в автоматизации сложных вычислений. Ведь они оказались нужны и при проектировании самолетов, и в атомной физике, а с началом Второй мировой войны - для многих военных целей: расчетах при артиллерийских стрельбах, расшифровки кодов разведки противника, разработки атомной бомбы и т.д.

    Идеи создания ЭВМ возникли независимо друг от друга в четырех промышленно развитых странах: США, Великобритании, Германии и СССР.

    Чтобы упростить и убыстрить процесс задания программ, Мочли и Экерт стали конструировать новый компьютер, который мог бы хранить программу в своей памяти. В 1945 г. к работе был привлечен знаменитый математик Джон фон Нейман, который подготовил доклад об этом компьютере. В нем фон Нейман ясно и просто сформулировал общие принципы функционирования компьютеров, т.е. универсальных вычислительных устройств. И до сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил в своем докладе в 1945 г. Джон фон Нейман. Первый компьютер, в котором были воплощены принципы фон Неймана, был построен в 1949 г.

    Развитие элементной базы компьютеров

    В 40-х и 50-х годах компьютеры создавались на основе электронных ламп. Поэтому компьютеры были очень большими, дорогими и ненадежными — ведь электронные лампы, как и обычные лампочки, часто перегорают. Но в 1948 г. были изобретены транзисторы — миниатюрные и недорогие электронные приборы, которые смогли заменить электронные лампы. Это привело к уменьшению размеров компьютеров в сотни раз и повышению их надежности. Первые компьютеры на основе транзисторов появились в конце 50-х годов, а к середине 60-х годов был созданы и значительно более компактные внешние устройства для компьютеров, что позволило фирме Digital Equipment выпустить в 1965 г. первый мини-компьютер PDP-8 размером с холодильник и стоимостью всего 20 тыс. дол.

    После появления транзисторов наиболее трудоемкой операцией при производстве компьютеров было соединение и спайка транзисторов для создания электронных схем. Но в 1959 г. Роберт Нойс (будущий основатель фирмы Intel) изобрел способ, позволяющий создавать на одной пластине кремния транзисторы и все необходимые соединения между ними. Полученные электронные схемы стали называться интегральными схемами, или чипами. В 1968 г. фирма Burroughs выпустила первый компьютер на интегральных схемах, а в 1970 г. фирма Intel начала продавать интегральные схемы памяти. В дальнейшем количество транзисторов, которое удавалось разместить на единицу площади интегральной схемы, увеличивалось приблизительно вдвое каждый год, что и обеспечивает постоянное уменьшение стоимости компьютеров и повышение быстродействия.

    Появление персональных компьютеров

    Вначале микропроцессоры использовались в различных специализированных устройствах, например, в калькуляторах. Но в 1974 г. несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера, т.е. устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя. В начале 1975 г. появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер продавался по цене около 500 дол. И хотя возможности его были весьма ограничены (оперативная память составляла всего 256 байт, клавиатура и экран отсутствовали), его появление было встречено с большим энтузиазмом: в первые же месяцы было продано несколько тысяч комплектов машины. Покупатели снабжали этот компьютер дополнительными устройствами: монитором для вывода информации, клавиатурой, блоками расширения памяти и т.д. Вскоре эти устройства стали выпускаться другими фирмами. В конце 1975 г. Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, что позволило пользователям достаточно просто общаться с компьютером и легко писать для него программы. Это также способствовало популярности персональных компьютеров.

    Персональные компьютеры стали продаваться в полной комплектации, с клавиатурой и монитором, спрос на них составил десятки, а затем и сотни тысяч штук в год. Появилось несколько журналов, посвященных персональным компьютерам. Росту объема продаж весьма способствовали многочисленные полезные программы, разработанные для деловых применений. Появились и коммерчески распространяемые программы, например, программа для редактирования текстов WordStar и табличный процессор VisiCalc. Эти (и многие другие) программы сделали покупку персональных компьютеров весьма выгодным для бизнеса: с их помощью стало возможно выполнять бухгалтерские расчеты, составлять документы и т.д. Использование же больших компьютеров для этих целей было слишком дорого.

    Компьютеры фирмы IBM

    В конце 1980 года маленькая группа в составе фирмы IВМ получила задание- разработать первый реальный ПК фирмы IВМ.

    осле того, как параметры для проекта были определены с помощью изучения рынка, фирма IВМ была в состоянии пройти путь от идеи до выпуска системы за один год. Компания совершила этот подвиг, прибегнув к покупке максимального количества компонентов у внешних продавцов. Например, фирма IВМ выдала контракт на разработку языков программирования и операционной системы маленькой компании Мicrosoft. Кроме помощи в быстром выпуске конечного продукта, использование внешних продавцов было открытым приглашением к дальнейшей поддержке системы. Так это и случилось. Дебют IВМ РС, использующего РС 005, состоялся во вторник, августа 1981 года. В этот день новый стандарт занял свое место в компьютерной индустрии. С тех пор фирма IВМ продала более чем 10 миллионов РС, и РС вырос в целое семейство компьютеров и внешних устройств. Для этого семейства написано больше программных продуктов, чем для любой другой системы, имеющейся на рынке.
    1   ...   12   13   14   15   16   17   18   19   20


    написать администратору сайта