Главная страница

Нелинейное программирование


Скачать 220.65 Kb.
НазваниеНелинейное программирование
Дата21.12.2022
Размер220.65 Kb.
Формат файлаdocx
Имя файлаkazedu_132142.docx
ТипРеферат
#857585
страница7 из 7
1   2   3   4   5   6   7


4.1.2. Метод поиска Хука-Дживса.


Метод, разработанный Хуком и Дживсом, является одним из первых алгоритмов, в которых при определении нового направления поиска учитывается информация, полученная на предыдущих итерациях. По существу процедура Хука—Дживса представляет собой комбинацию «исследующего» поиска с циклическим изменением переменных и ускоряющегося поиска по образцу с использованием определенных эвристических правил. Исследующий поиск ориентирован на выявление характера локального поведения целевой функции и определение направлений вдоль «оврагов». Полученная в результате исследующего поиска информация затем используется в процессе поиска по образцу при движении по «оврагам».

Исследующий поиск.

Для проведения исследующего поиска необходимо задать величину шага, которая может быть раз­личной для разных координатных направлений и изменяться в про­цессе поиска. Исследующий поиск начинается в некоторой исходной точке. Если значение целевой функции в пробной точке не превы­шает значения функции в исходной точке, то шаг поиска рассматри­вается как успешный. В противном случае необходимо вернуться в предыдущую точку и сделать шаг в противоположном направлении с последующей проверкой значения целевой функции. После пере­бора всех N координат исследующий поиск завершается. Получен­ную в результате точку называют базовой точкой.

Поиск по образцу.

Поиск по образцу заключается в реализации единственного шага из полученной базовой точки вдоль-прямой, соединяющей эту точку с предыдущей базовой точкой. Новая точка образца определяется в соответствии с формулой



Как только движение по образцу не приводит к уменьшению целе­вой функция, точка фиксируется в качестве временной базо­вой точки и вновь проводится исследующий поиск. Если в резуль­тате получается точка с меньшим значением целевой функции, чем в точке , то она рассматривается как новая базовая точка . С другой стороны, если исследующий поиск неудачен, необходимо вернуться в точку и провести исследующий поиск с целью вы­явления нового направления минимизации. В конечном счете, воз­никает ситуация, когда такой поиск не приводит к успеху. В этом случае требуется уменьшить величину шага путем введения неко­торого множителя и возобновить исследующий поиск. Поиск завер­шается, когда величина шага становится достаточно малой. После­довательность точек, получаемую в процессе реализации метода, можно записать в следующем виде:

- текущая базовая точка,

- предыдущая базовая точка,

- точка, построенная при движении по образцу,

- следующая (новая) базовая точка.

Приведенная последовательность характеризует логическую струк­туру поиска по методу Хука — Дживса.

Структура метода поиска Хука — Дживса

Шаг 1 . Определить:

начальную точку ,

приращения

коэффициент уменьшения шага ,

параметр окончания поиска .

Ш а г 2. ровести исследующий поиск.

Ш а г 3. Был ли исследующий поиск удачным (найдена ли точ­ка с меньшим значением


целевой функции)?

Да: перейти к шагу 5.

Нет: продолжать.

Ш а г 4. Проверка на окончание поиска.

Выполняется ли неравенство ?

Да: прекратить поиск; текущая точка аппроксимирует точку оп­тимума .

Нет: уменьшить приращения по формуле



Перейти к шагу 2.

Ш а г 5. Провести поиск по образцу:



Шаг 6. Провести исследующий поиск, используя в ка­честве базовой точки;

пусть полученная в результате точка.

Ш а г 7. Выполняется ли неравенство ?

Да: положить Перейти к шагу 5.

Нет: перейти к шагу 4.
Пример 6 Поиск по методу Хука — Дживса

Найти точку минимума функции используя начальную точку .

Решение.

Для того чтобы применить метод прямого поиска .Хука — Дживса, необходимо задать следующие величины:

векторная величина приращения = ,

коэффициент уменьшения шага = 2,

параметр окончания поиска = 10-4.

Итерации начинаются с исследующего поиска вокруг точки , которой соответствует значение функции Фиксируя , дадим приращение переменной :



Успех.

Следовательно, необходимо зафиксировать и дать прираще­ние переменной :



Успех.

Таким образом, в результате исследующего поиска найдена точка



Поскольку исследующий поиск был удачным, переходим к поиску по образцу:





Далее проводится исследующий поиск вокруг точки , который оказывается удачным при использовании положительных прираще­ний переменных х1 и х2. В результате получаем точку



Поскольку , поиск по образцу следует считать успеш­ным, и становится новой базовой точкой при следующем про­ведении поиска по образцу. Итерации продолжаются, пока умень­шение величины шага не укажет на окончание поиска в окрестности точки минимума. Последовательные шаги реализации метода показаны на рисунке.

Из примера следует, что метод Хука — Дживса характери­зуется несложной стратегией поиска, относительной простотой вычислений и невысоким уровнем требований к объему памяти ЭВМ, который оказывается даже ниже, чем в случае использования ме­тода поиска по симплексу.



Итерации поиска по методу Хука-Дживса на примере
1   2   3   4   5   6   7


написать администратору сайта