Главная страница

Нелинейное программирование


Скачать 220.65 Kb.
НазваниеНелинейное программирование
Дата21.12.2022
Размер220.65 Kb.
Формат файлаdocx
Имя файлаkazedu_132142.docx
ТипРеферат
#857585
страница6 из 7
1   2   3   4   5   6   7


4.1.1. Метод поиска по симплексу(S2 -метод)


Первые попытки решения оптимизационных задач без ограниче­ний на основе прямого поиска связаны с использованием одномер­ных методов оптимизации. Как правило, при реализации таких методов допустимая область определения показателя качества функционирования системы (целевой функции) заменяется дискрет­ным множеством (решеткой) точек пространства управляемых пере­менных, а затем используются различные стратегии уменьшения области, которая содержит решение задачи. Часто эта процедура оказывается эквивалентной равномерному поиску в узлах решетки и, следовательно, непригодной для решения задач с числом пере­менных, превышающим 2. Более полезная идея заключается в выбо­ре базовой точки и оценивании значений целевой функции в точках, окружающих базовую точку. Например, при решении задачи с дву­мя переменными можно воспользоваться квадратным образцом, изображенным на рис.2


Рис 2. Квадратный образец (частный случай кубического образца)
За­тем «наилучшая» из пяти исследуемых точек выбирается в ка­честве следующей базовой точ­ки, вокруг которой строится аналогичный образец. Если ни одна из угловых точек не имеет преимущества перед базовой, размеры образца следует уменьшить, после чего продолжить поиск.

Этот тип эволюционной опти­мизации был использован Бок­сом и другими исследователями для анализа функционирования промышленных предприятий, когда эффект варьирования значений переменных, описывающих производственные процессы, измеряется с ошибкой. В задачах большой размерности вычисление значений целевой функции проводится во всех вершинах, а также в центре тяжести гиперкуба (гиперкуб – куб в n-мерном евклидовом пространстве, т.е. множество S={x=( ) | } , где а и b – заданные числа ) , т. е. в точках так называемого кубического образца. Если количество переменных (размерность пространства, в котором ведется поиск) равно n, то поиск по кубическому образцу требует +1 вычислений значения функций для одного образца. При увеличении размерности задачи необходимое количество вы­числений значения целевой функции возрастает чрезвычайно быст­ро. Таким образом, несмотря на логическую простоту поиска по кубическому образцу, возникает необходимость использования более эффективных методов прямого поиска для решения возникаю­щих на практике задач оптимизации.

Одна из вызывающих особый интерес стратегий поиска положе­на в основу метода поиска по симплексу, предложенного Спендли, Хекстом и Химсвортом. Следует отметить, что указанный метод и другие подобные методы не имеют отношения к симплекс-методу линейного программирования, а сходство названий носит случай­ный характер. Процедура симплексного поиска Спендли, Хекста и Химсворта базируется на том, что экспериментальным образцом, содержащим наименьшее количество точек, является регулярный симплекс. Регулярный симплекс в n-мерном пространстве пред­ставляет собой многогранник, образованный n+1 равностоящими друг от друга точками-вершинами. Например, в случае двух пере­менных симплексом является равносторонний треугольник; в трех­мерном пространстве симплекс представляет собой тетраэдр. В алго­ритме симплексного поиска используется важное свойство симплек­сов, согласно которому новый симплекс можно построить на любой грани начального симплекса путем переноса выбранной вершины на надлежащее расстояние вдоль прямой, проведенной через центр тяжести остальных вершин начального симплекса. Полученная та­ким образом точка является вершиной нового симплекса, а выбран­ная при построении вершина начального симплекса исключается. Нетрудно видеть, что при переходе к новому симплексу требуется одно вычисление значения целевой функции. Рис 3 иллюстрирует процесс построения нового симплекса на плоскости.

Рис.3.Построение нового симплекса.

а – начальный симплекс

б – новый симплекс

Работа алгоритма симплексного поиска начинается с построения регулярного симплекса в пространстве независимых переменных и оценивания значений целевой функции в каждой из вершин симп­лекса. При этом определяется вершина, которой соответствует наибольшее значение целевой функции. Затем найденная вершина проецируется через центр тяжести остальных вершин симплекса в новую точку, которая используется в качестве вершины нового симплекса. Если функция убывает достаточно плавно, итерации продолжаются до тех пор, пока либо не будет накрыта точка мини­мума, либо не начнется циклическое движение по двум или более симплексам. В таких ситуациях можно воспользоваться следую­щими тремя правилами.

Правило 1. «Накрытие» точки минимума

Если вершина, которой соответствует наибольшее значение це­левой функции, построена на предыдущей итерации, то вместо нее берется вершина, которой соответствует следующее по величине значение целевой функции.

Правило 2. Циклическое движение

Если некоторая вершина симплекса не исключается на протя­жении более чем М итераций, то необходимо уменьшить размеры симплекса с помощью коэффициента редукции и построить новый симплекс, выбрав в качестве базовой точку, которой соответствует минимальное значение целевой функции. Спендли, Хекст и Химс-ворт предложили вычислять М по формуле

M=1,65n+0,05

где n — размерность задачи, а М округляется до ближайшего целого числа. Для применения данного правила требуется уста­новить величину коэффициента редукции.

Правило 3. Критерий окончания поиска

Поиск завершается, когда или размеры симплекса, или разности между значениями функции в вершинах становятся достаточно ма­лыми. Чтобы можно было применять эти правила, необходимо за­дать величину параметра окончания поиска.

Реализация изучаемого алгоритма основана на вычислениях двух типов: (1) построении регулярного симплекса при заданных базовой точке и масштабном множителе и (2) расчете координат отраженной точки. Построение симплекса является достаточно простой процедурой, так как из элементарной геометрии известно, что при заданных начальной (базовой) точке и масштабном мно­жителе координаты остальных n вершин симплекса в n-мерном пространстве вычисляются по формуле

(7)

для i и j=1,2,3,…,n

Приращения и , зависящие только от n и выбранного мас­штабного множителя , определяются по формулам

(8)

(9)

Заметим, что величина масштабного множителя выбирается ис­следователем, исходя из характеристик решаемой задачи. При =1 ребра регулярного симплекса имеют единичную длину. Вычисления второго типа, связанные с отражением относи­тельно центра тяжести, также представляют несложную процедуру. Пусть — точка, подлежащая отражению. Центр тяжести осталь­ных n точек расположен в точке

(10)

Все точки прямой, проходящей через и хс, задаются формулой

(11)

При =0 получаем исходную точку , тогда как значение =1 соответствует центру тяжести хс. Для того чтобы построенный симп­лекс обладал свойством регулярности, отражение должно быть сим­метричным. Следовательно, новая вершина получается при =2. Таким образом,

(12)

Проиллюстрируем вычислительную схему метода следующим при­мером.

Пример 5. Вычисления в соответствии с методом поиска по симплексу

Минимизировать f(x)=

Решение.

Для построения исходного симплекса требуется задать начальную точку и масштабный множитель. Пусть x = и =2. Тогда





Используя эти два параметра, вычислим координаты двух остальных вершин симплекса:





которым соответствуют значения целевой функции, равные =0,2374 и 3,0658. Так как 5, необходимо отразить точку относительно центра тяжести двух остальных вершин симплекса



Используя формулу (12), получаем





В полученной точке 2,3027, т. е. наблюдается уменьшение целевой функции. Новый симплекс образован точками и . В соответствии с алгоритмом следует отразить точку х(2), ко­торой соответствует наибольшее значение целевой функции, отно­сительно центра тяжести точек и х(3). Итерации продолжаются до тех пор, пока не потребуется применение правил 1, 2 и 3, которые были сформулированы выше.

Изложенный выше алгоритм - метода имеет несколько очевид­ных преимуществ.

1. Расчеты и логическая структура метода отличаются сравни­тельной простотой, и, следовательно, соответствующая программа для ЭВМ оказывается относительно короткой.

2. Уровень требований к объему памяти ЭВМ невысокий, мас­сив имеет размерность (n+1, n+2).

3. Используется сравнительно небольшое число заранее уста­новленных параметров: масштабный множитель , коэффициент уменьшения множителя (если применяется правило 2) и параметры окончания поиска.

4. Алгоритм оказывается эффективным даже в тех случаях, когда ошибка вычисления значений целевой функции велика, по­скольку при его реализации оперируют наибольшими значениями функции в вершинах, а не наименьшими.

Перечисленные факторы характеризуют метод поиска по симплек­су как весьма полезный при проведении вычислений в реальном времени.

Алгоритм обладает также рядом существенных недостатков.

1. Не исключено возникновение трудностей, связанных с масштабированием, поскольку все координаты вершин симплекса за­висят от одного и того же масштабного множителя . Чтобы обойти трудности такого рода, в практических задачах следует промасштабировать все переменные с тем, чтобы их значения были сравнимыми по величине.

2. Алгоритм работает слишком медленно, так как полученная на предыдущих итерациях информация не используется для уско­рения поиска.

3. Не существует простого способа расширения симплекса, не требующего пересчета значений целевой функции во всех точках образца. Таким образом, если по какой-либо причине уменьшается (например, если встречается область с узким «оврагом» или «хреб­том»), то поиск должен продолжаться с уменьшенной величиной шага.
1   2   3   4   5   6   7


написать администратору сайта