Обессоливание и обезвоживание нефти
Скачать 50.24 Kb.
|
Обессоливание и обезвоживание нефти Введение Добытая из промысловых скважин нефть содержит попутный газ, песок, ил, кристаллы солей, а также воду, в которой растворены соли, преимущественно хлориды натрия, кальция и магния, реже - карбонаты и сульфаты. Обычно в начальный период эксплуатации месторождения добывается безводная или малообводненная нефть, но по мере добычи ее обводненность увеличивается и достигает до (94 ± 4) %. Очевидно, что такую "грязную" и сырую нефть, содержащую к тому же легколетучие органические (от метана до бутана) и неорганические (H2S, СО2) газовые компоненты, нельзя транспортировать и перерабатывать на НПЗ без ее тщательной промысловой подготовки. Наличие в нефти указанных веществ оказывает вредное влияние на работу оборудования нефтеперерабатывающих заводов: 1) при большом содержании воды повышается давление в аппаратуре установок перегонки нефти, снижается их производительность, возрастает расход энергии; 2) отложение солей в трубах печей и теплообменников требует их частой очистки, уменьшает коэффициент теплопередачи, вызывает сильную коррозию; 3) накапливаясь в остаточных нефтепродуктах (мазуте, гудроне) ухудшают их качество. 1. Вредные примеси в нефти Присутствие пластовой воды в нефти удорожает её транспортировку. Повышает энергозатраты на испарение воды и конденсацию паров. Кроме того, присутствие балластной воды повышает вязкость нефтяной системы, вызывает опасность образования кристаллогидратов при пониженной температуре. Пластовые воды, добываемые с нефтью, содержат, как правило, значительное количество растворимых минеральных солей, растворимые газы, химические соединения, образующие неустойчивые коллоидные растворы (золи), твёрдые неорганические вещества, нерастворимые в воде и находящиеся во взвешенном состоянии. Механические примеси нефти, состоящие из взвешенных в ней высокодисперсных частиц песка, глины, известняка и других пород, адсорбируясь на поверхности глобул воды, способствуют стабилизации нефтяных эмульсий. Образование устойчивых эмульсий приводит к увеличению эксплуатационных затрат на обезвоживание и обессоливание промысловой нефти, а также оказывает вредное воздействие на окружающую среду. Так, при отделении пластовой воды от нефти в отстойниках и резервуарах часть нефти сбрасывается вместе с водой в виде эмульсии, что загрязняет сточные воды. Та часть эмульсии, которая улавливается в ловушках, собирается и накапливается в земляных амбарах и нефтяных прудах, образуя так называемые "амбарные" нефти, которые не находят рационального применения или утилизации. При большом содержании механических примесей усиливается износ труб и образование отложений в нефтеаппаратах, что приводит к снижению коэффициента теплопередачи и производительности установок. Ещё более вредное воздействие, чем вода и механические примеси, на переработку нефти оказывют соли - хлориды, которые попадают в нефть вместе с эмульгированной водой. Особенно Са и Mg. При их гидролизе (даже при низкой температуре) образуется соляная кислота. Под действием соляной кислоты происходит разрушение (коррозия) металла аппаратуры технологических установок. Особенно интенсивно разъедается продуктами гидролиза хлоридов конденсационно-холодильная аппаратура перегонных установок. Кроме того, соли, накапливаясь в остаточных нефтепродуктах - мазуте, гудроне и коксе, ухудшают их качество. Наибольшей способностью к гидролизу обладает MgCl2. Гидролиз MgCl2 протекает по следующим уравнениям: MgCl2+ Н2О > MgOHCl + HCl, MgCl2+ 2Н2О > Mg(OH)2+ 2HCl. При наличии Н2S, образующегося в результате разложения сернистых соединений нефти, и в сочетании с кислотой происходит сильная коррозия аппаратуры: Fe + H2S > FeS + H2, FeS + 2HCl > FeCl2+ H2S. Таблица 1 - Группы нефтей по ГОСТ 9965-76
Процессы обессоливания и обезвоживания нефтей О б е з в о ж и в а н и е нефти проводят путем разрушения (расслоения) водно-нефтяной эмульсии с применением деэмуль-гаторов-разл. ПАВ, к-рые, адсорбируясь на границе раздела фаз, способствуют разрушению капель (глобул) диспергированной в нефти воды. Однако даже при глубоком обезвоживании нефти до содержания пластовой воды 0,1-0,3% (содержание хлоридов: 100-300 мг/л). Поэтому одного только обезвоживания для подготовки к переработке нефтей большинства месторождений недостаточно. Оставшиеся в нефти соли и воду удаляют с помощью принципиально мало отличающейся от обезвоживания операции,наз. о б е с с о л и-в а н и е м. Последнее заключается в смешении нефти со свежей пресной водой, разрушении образовавшейся эмульсии и послед. отделении от нефти промывной воды с перешедшими в нее солями и мех. примесями. Эмульсия - это гетерогенная система, состоящая из двух несмешивающихся или малосмешивающихся жидкостей, одна из которых диспергирована в другой в виде мелких капель (глобул) диаметром, превышающим 0,1 мкм. Различают следующие типы нефтяных эмульсий: нефть в воде (гидрофильная или эмульсия прямого вида) и вода в нефти (гидрофобная или эмульсия обратного типа). В первом случае капли нефти распределены в водной дисперсионной среде, во втором - дисперсию сразу образуют капли воды, а дисперсионной средой является нефть. Образование эмульсий связано с поверхностными явлениями на границе раздела фаз дисперсной системы, прежде всего поверхностным натяжением ? силой, с которой жидкость сопротивляется увеличению своей поверхности. Вещества, способствующие образованию и стабилизации эмульсий, называются эмульгаторами; вещества, разрушающие поверхностную адсорбционную пленку стойких эмульсий - деэмульгаторами. Эмульгаторами обычно являются полярные вещества нефти, такие, как смолы, асфальтены, асфальтогеновые кислоты и их ангидриды, соли нафтеновых кислот, а также различные органические примеси. Установлено, что в образовании стойких эмульсий принимают участие также различные твердые углеводороды: парафины и церезины нефтей. Тип образующейся эмульсии в значительной степени зависит от свойств эмульгатора: эмульгаторы, обладающие гидрофобными свойствами, образуют эмульсию типа вода в нефти, то есть гидрофобную, а эмульгаторы гидрофильные ? гидрофильную эмульсию типа нефть в воде. Следовательно, эмульгаторы способствуют образованию эмульсии того же типа, что и тип эмульгатора. При наличии эмульгаторов обоих типов возможно обращение эмульсий, то есть переход из одного типа в другой. Этим явлением пользуются иногда при разрушении эмульсий. На НПЗ поступают эмульсии воды в нефти. Они являются весьма стойкими и в большинстве случаев не расслаиваются под действием одной только силы тяжести. Поэтому необходимо создать условия, при которых возможно укрупнение, слияние глобул воды при их столкновении и выделение из нефтяной среды. Чем благоприятнее условия для передвижения капель, тем легче разрушаются эмульсии. Различные нефти обладают разной склонностью к образованию эмульсии (эмульсионность) и по этому показателю, измеряемому в процентах, они разделяются на три группы: высокоэмульсионная (эмульсионность от 80 до 100 %), промежуточная (эмульсионность 40 %), низкоэмульсионная (эмульсионность 1,3-8,0 %). Оценка эмульсионности нефтей позволяет выбирать оптимальный режим и схему процесса их обезвоживания и обессоливания [4]. Методы разрушения водонефтяных эмульсий Эмульсии подвергают различным воздействиям, направленным на укрупнение капель воды, увеличение разности плотностей (движущая сила расслоения), снижение вязкости нефти. Для обезвоживания и обессоливания нефти используют следующие технологические процессы: 1) гравитационный отстой нефти; 2) горячий отстой нефти; 3) подогрев эмульсии (термообработка); 5) применение электрического поля (электрообработка). На практике в основном применяется сочетание термодинамического и электрического способов разрушения эмульсии. Наиболее прост по технологии процесс гравитационного отстоя. В этом случае нефтью заполняют резервуары большой ёмкости и выдерживают определённое время (48 часов и более). Во время выдержки происходят процессы коагуляции капель воды, и более крупные и тяжелые капли воды под действием силы тяжести (гравитации) оседают на дно и скапливаются в виде слоя подтоварной воды. Однако гравитационный процесс отстоя холодной нефти - малопроизводительный и недостаточно эффективный метод обезвоживания нефти. Более эффективен горячий отстой обводнённой нефти, когда за счёт предварительного нагрева нефти до температуры (60 ± 10) °С значительно облегчаются процессы коагуляции капель воды и ускоряется обезвоживание нефти при отстое. Недостатком гравитационных методов обезвоживания является малая эффективность. Эффективность механического разделения эмульсии можно существенно повысить, если вместо сил гравитации использовать центробежную силу, т.е. подвергать эмульсию центрифугированию. Скорость осаждения частицы в центрифуге всегда больше, чем скорость свободного осаждения под действием силы тяжести. Но этот метод не нашёл применения в промышленности из-за сложности аппаратурного оформления. Деэмульгаторы - это специально синтезированные химические соединения, к которым предъявляются следующие требования: - способность не изменять свойства нефти и не реагировать с молекулами воды; - высокая деэмульгирующая способность при малых расходах; - простота извлечения из сточной воды, отделённой от нефти; - нетоксичность, инертность по отношению к оборудованию, невысокая стоимость, доступность. Существует два типа деэмульгаторов - неэлектролитные и коллоидного типа. К неэлектролитным деэмульгаторам относятся органические вещества (бензол, спирты, керосин), растворяющие эмульгаторы нефти и снижающие при этом её вязкость. Это способствует быстрой коалесценции капель воды и их осаждению. Их используют главным образом в лабораторной и исследовательской практике. В промышленной технологии обезвоживания нефти неэлектролиты не применяют из-за большого расхода и высокой стоимости, а также из-за сложности их отделения от нефти после осаждения воды. Наиболее широко в промышленности используют поверхностно-активные вещества (ПАВ) - коллоидного типа. Они бывают трёх видов: анионоактивные, катионоактивные и неионогенные, то есть не образующие ионов в воде. Анионоактивные (сульфанол, карбоновые кислоты) в присутствии воды диссоциируют на отрицательно заряженные ионы углеводородной части и положительные ионы металла и водорода. Катионоактивные в присутствии воды распадаются на положительно заряженный радикал и отрицательно заряженный остаток кислоты. В качестве деэмульгаторов используются редко. Неионогенные нашли самое широкое применение в технологии обезвоживания нефтей. ПАВ обладают по сравнению с содержащимися в нефтях природными эмульгаторами более высокой поверхностной активностью. Разрушение нефтяных эмульсий применением ПАВ может быть результатом: 1) адсорбционного вытеснения с поверхности глобул воды эмульгатора, стабилизирующего эмульсию; 2) образования нестабильных эмульсий противоположного типа; 3) химического растворения адсорбционной пленки. Происходит дестабилизация водонефтяной эмульсии. Образовавшиеся из стойких нестойкие эмульсии затем легко коалесцируют в крупные глобулы воды и осаждаются из дисперсионной среды (нефти). Именно стадия дестабилизации является лимитирующей суммарный процесс обезвоживания и обессоливания нефти. Она состоит, в свою очередь, из двух этапов: а) доставки деэмульгатора на поверхность эмульсии, то есть транспортной стадии, являющейся диффузионным процессом; б) разрушения бронирующей оболочки, образованной эмульгатором нефти, или кинетической стадии. Неионогенные деэмульгаторы по растворимости в воде условно можно разделить на водорастворимые, нефтерастворимые и водонефтерастворимые. Водорастворимые деэмульгаторы применяют в виде одно-двух процентных водных растворов. Они частично вымываются дренажной водой, что увеличивает их расход на обессоливание. К водорастворимым относятся оксиэтилированные жидкие органические кислоты (ОЖК), алкилфенолы (ОП-10 и ОП-30), органические спирты (неонол, оксанол, синтанол). Эти вещества на (80 ± 5) % растворимы в воде. Нефтерастворимые ПАВ образуют в нефти истинные или коллоидные растворы. Они на (12,5 ± 2,5) % переходят в воду. К таким деэмульгаторам относятся дипроксамин 157, оксафоры 1107 и 43, прохинор 2258, прогалит. Все эти деэмульгаторы имеют высокую молярную массу от 91,5 до 3,3 тысяч, высокую плотность примерно 1000 кг/м3 и высокую вязкость. Нефтерастворимые деэмульгаторы белее предпочтительны, поскольку: - они легко смешиваются (даже при слабом перемешивании) с нефтью, в меньшей степени вымываются водой и не загрязняют сточные воды; - их расход практически не зависит от обводненности нефти; - оставаясь в нефти, предупреждают образование стойких эмульсий и их "старение"; - обладают ингибирующими коррозию металлов свойствами; - являются легкоподвижными жидкостями с низкой температурой застывания и могут применяться без растворителя, удобны для транспортирования и дозировки. Термохимические методы разрушения эмульсии применяются в сочетании с электрохимическими, то есть с созданием сильного электрического поля с частотой переменного тока, равной 50 с?1 и высоким напряжением от 15 до 44 кВ.). В результате индукции электрического поля диспергированные капли воды поляризуются, деформируются (вытягиваются) с разрушением защитных пленок, и при частой смене полярности электродов (50 раз в секунду) увеличивается вероятность их столкновения и укрупнения, и в итоге возрастает скорость осаждения глобул с образованием отдельной фазы. По мере увеличения глубины обезвоживания расстояния между оставшимися каплями увеличиваются и коалесценция замедляется. Поэтому конечное содержание воды в нефти, обработанной в электрическом поле переменного тока, колеблется от следов до 0,1 %. Коалесценцию оставшихся капель воды можно усилить повышением напряженности электрического поля до определенного предела. При дальнейшем повышении напряженности поля ускоряются нежелательные процессы электрического диспергирования капель и коалесценция снова замедляется. Поэтому применительно к конкретному типу эмульсий целесообразно подбирать оптимальные размеры электродов и расстояния между ними. Для повышения скорости электрообезвоживания нефть предварительно подогревают до температуры (60 ± 10) °С [4]. Обессоливание нефтей Наряду с обезвоживанием необходимо глубокое обессоливание нефти. Все упомянутые выше факторы способствуют интенсификации выделения воды из эмульсии, но не влияют на засоленность остающихся после обезвоживания капель воды в нефти. С целью достижения не только глубокого обезвоживания, но и обессоливания нефти используют промывку нефти свежей пресной водой. Роль этой промывной воды двояка. С одной стороны, смешиваясь с солёными каплями воды эмульсии, она разбавляет их и уменьшает концентрацию солей в них, а с другой стороны, турбулизирует поток нефтяной эмульсии, способствуя также коалесценции капель, т.е. оказывает гидромеханическое воздействие на эмульсию. Количество оставшихся в нефтях солей зависит как от содержания остаточной воды, так и от ее засоленности. Поэтому с целью достижения глубокого обессоливания осуществляют промывку солей подачей в нефть оптимального количества промывной (пресной) воды. При подаче промывной воды только 1 % участвует в разбавлении капель солёной воды, находящейся в эмульсии, а остальное количество промывной воды является только турбулизатором, поэтому подаётся до 1 % пресной воды и от 4 до 5% рециркулирующей, уже использованной от массы нефти, что позволяет в 5?6 раз снизить количество сбрасываемой сточной солёной и загрязнённой воды и уменьшить мощности по её обезвоживанию. При чрезмерном увеличении количества промывной воды растут затраты на обессоливание нефти и количество образующихся стоков. В этой связи с целью экономии пресной воды на ЭЛОУ многих НПЗ успешно применяют двухступенчатые схемы с противоточной подачей промывной воды: свежая вода поступает на вход последней ступени, а дренажная выводится из первой. Число ступеней (1, 2 или 3) обессоливания нефти определяется свойствами исходной эмульсии и содержанием в ней солей [5]. На нефтяных месторождениях эксплуатируются следующие установки обезвоживания и обессоливания нефти:· термохимические установки обезвоживания нефти (ТХУ); · электрообессоливающие установки (ЭЛОУ). Рис.1. Технологическая схема термохимической установки обезвоживания нефтиВ термохимической установке обезвоживания нефти (рис.1) сырую нефть (нефтяная эмульсия) I из сырьевого резервуара 1 насосом 2 через теплообменник 3 подают в трубчатую печь 4. Перед насосом 2 в нефть закачивают реагент-деэмульгатор II. В теплообменнике 3 и трубчатой печи 4 нефтяная эмульсия подогревается, и в процессе ее турбулентного перемешивания в насосе и при движении по трубному змеевику в печи происходит доведение реагента-деэмульгатора до капель пластовой воды и разрушение бронирующих слоев асфальтосмолистых веществ. Нагрев в трубчатой печи осуществляется при необходимости нагрева нефтяной эмульсии до температуры выше 120 °С (при повышенном давлении, чтобы не допустить вскипания воды). При меньших температурах нагрева вместо трубчатой печи 4 можно использовать пароподогреватель. Оптимальной температурой нагрева считается такая, при которой кинематическая вязкость нефтяной эмульсии составляет 4 * 10-6 м2/с. Неустойчивая эмульсия из трубчатой печи 4 поступает в отстойник 5, где расслаивается на нефть и воду. Обезвоженная нефть выводится сверху из отстойника 5, проходит через теплообменник 3, где отдает часть тепла поступающей на деэмульсацию сырой нефти и поступает в резервуар 6, из которого товарная нефть III насосом откачивается в магистральный нефтепровод. Отделившаяся в отстойнике 5 пластовая вода IV направляется на установку по подготовке сточных вод. Сырьевой резервуар 1 может работать как резервуар с предварительным сбросом воды. В этом случае часть горячей воды, выходящей из отстойника 5 и содержащей реагент-деэмульгатор, подается в поток сырой нефти перед резервуаром 1 (пунктирная линия, рис.1). В этом случае резервуар 1 оборудуют распределительным маточником и переливной трубой. В резервуаре поддерживается слой воды, так что поступающая нефтяная эмульсия распределенным потоком проходит через толщу воды, что способствует более полному отделению свободной воды из нефтяной эмульсии. Отделившаяся в резервуаре с предварительным сбросом вода насосом откачивается на установку по подготовке сточных вод. Тепловая обработка эмульсий заключается в подогреве до оптимальной для данной нефти температуры (105 ± 45) °С в зависимости от ее плотности, вязкостно-температурной характеристики, типа эмульсии и давления в электродегидраторе или отстойнике термохимического обезвоживания. Повышение температуры до определенного предела способствует интенсификации всех стадий процесса деэмульгирования: во-первых, дестабилизации эмульсий в результате повышения растворимости природных эмульгаторов в нефти и расплавления бронирующих кристаллов парафинов и асфальтенов и, во-вторых, возрастанию скорости осаждения капель воды в результате снижения вязкости и плотности нефти, тем самым уменьшению требуемого расхода деэмульгатора. Выбор температуры определяется в первую очередь свойствами самой нефти: для лёгких маловязких нефтей во избежание выкипания нефти применяют более низкие температуры, а для тяжелых - более высокие в сочетании с повышением давления. Оптимальной температурой обессоливания следует считать от 100 до 120 °С (прикамская, мангышлакская, туркменская нефти). Температуры от 120 °С до 140 °С - для тяжелых, вязких нефтей (арланская). Обычно как оптимальную в дегидраторах подбирают такую температуру, при которой вязкость нефти составляет от двух до четырёх сСт. Многие нефти достаточно хорошо обессоливаются при температуре от 70 до 90 °С. При повышении температуры нагрева нефти приходится одновременно повышать и давление, чтобы поддерживать жидкофазное состояние системы и уменьшить потери нефти и пожароопасность. Однако повышение давления вызывает необходимость увеличения толщины стенок аппаратов. Современные модели электродегидраторов рассчитаны на давление до 1,8 МПа. Наряду с повышением температуры используют и введение деэмульгатора, который адсорбируясь на границе раздела фаз, диспергирует и пептизирует скопившиеся вокруг капелек природные эмульгаторы и тем самым резко снижает структурно-механическую прочность "бронирующих" слоёв. При совместном воздействии температуры и деэмульгаторов происходит интенсивное слияние капелек воды в более крупные капли, способные под воздействием силы тяжести достаточно быстро выпадать в осадок и отделяться от нефти. Наиболее эффективным считается способ обессоливания на электрообессоливающей установке (рис.2). При этом для стабилизации обводненности нефтяной эмульсии, поступающей в электродегидратор, вводится ступень теплохимического обезвоживания. Сырая нефть I из сырьевого резервуара 1 сырьевым насосом 2 прокачивается через теплообменник 3 и подогреватель 4 и поступает в отстойник 5. Перед сырьевым насосом в сырую нефть вводят реагент-деэмульгатор II, поэтому в отстойнике 5 из сырой нефти Рис.2. Технологическая схема электрообезвоживающей установкивыделяется основное количество пластвой .воды. Из отстойника 5 нефть с содержанием остаточной воды до 1—2 % направляется в электродегидратор 8. При этом перед электродегидратором в .поток нефти вводят пресную воду III и деэмульгатор II, так что перед обессоливанием обводненность нефти в зависимости от содержания солей доводится до 8—15 %. Соли растворяются в пресной воде и после отделения воды от нефти в электродегидраторе нефть становится обессоленной. Сверху электродегидратора 8 выходит обезвоженная и обессоленная нефть, которая, пройдя промежуточную емкость 7, насосом 6 прокачивается через теплообменник 3, подогревая сырую нефть, и направляется в резервуар 9 товарной нефти. Вода IV, отделившаяся от нефти в отстойнике 5 и электродегидраторе 8, направляется на установку по подготовке воды. Товарная нефть V насосом откачивается в магистральный нефтепровод. Технико-экономические показатели ЭЛОУ значительно улучшаются при применении более высокопроизводительных электродегидраторов за счет уменьшения количества теплообменников, сырьевых насосов, резервуаров, приборов КИПА и т.д. (экономический эффект от укрупнения) и при комбинировании с установками прямой перегонки нефти за счет снижения капитальных и энергозатрат, увеличения производительности труда и т.д. (эффект от комбинирования). Так, комбинированный с установкой первичной перегонки нефти (АВТ) ЭЛОУ с горизонтальными электродегидратора- ми типа 2ЭГ-160, по сравнению с отдельно стоящей ЭЛОУ с шаровыми, при одинаковой производительности (6 млн. т/г) имеет примерно в 1,5 раза меньшие капитальные затраты, эксплуатационные расходы и себестоимость обессоливания. В последние годы за рубежом и в нашей стране новые АВТ или комбинированные установки строятся только с встроенными горизонтальными электродегидраторами высокой единичной мощности. В настоящее время разработан и внедряется горизонтальный электродегидратор объемом 200 м3 типа 2ЭГ-200 производительностью равной 560 м3/ч (D = 3,4 м и L = 23,5 м) и разрабатывается перспективная его модель с объемом 450 м3 с улучшенной конструкцией электродов. Одновременно с укрупнением единичных мощностей происходило непрерывное совершенствование конструкции электродегидраторов и их отдельных узлов, заключающееся в улучшении интенсивности перемешивания нефти с деэмульгатором и водой, снижении гидравлического сопротивления, оптимизации места ввода нефти и гидродинамической обстановки, организации двойного или тройного ввода нефти и т.д. На технико-экономические показатели ЭЛОУ влияют также интенсивность и продолжительность перемешивания эмульсионной нефти с раствором деэмульгаторов. Так, для деэмульгаторов с малой поверхностной активностью, особенно когда они плохо растворимы в нефти, требуется более интенсивное и продолжительное перемешивание, но не настолько, чтобы образовалась высокодисперсная система, которая плохо осаждается. Обычно перемешивание нефти с деэмульгатором осуществляют в сырьевом центробежном насосе. Однако лучше иметь такие специальные смесительные устройства, как диафрагмы, клапаны, вращающиеся роторы и т.д. Целесообразно также иметь на ЭЛОУ дозировочные насосы малой производительности. На рисунке 2 приведена принципиальная схема ЭЛОУ с двухступенчатым обезвоживанием и обессоливанием нефти. 1-насос сырьевой нефти; 2 - насос подачи воды; 3 - насос подачи деэмульгатора; 4- теплообменники нагрева нефти; 5 - смесительные клапаны; 6 - емкости отстоя дренажной воды; 7, 8 - электродегидраторы I и II ступени соответственно; I - сырая нефть; II - обезвоженная и обессоленная нефть; III - промывная вода; IV - деэмульгатор Рисунок 2 ? Принципиальная схема блока ЭЛОУ установки АВТ-6. Сырая нефть насосом прокачивается через теплообменник, тепловые подогреватели и, нагретая до температуры (115 ± 5) °С, поступает в электродегидратор первой ступени. Перед сырьевым насосом в нефть вводится деэмульгатор, а после паровых подогревателей - раствор щёлочи. Введение раствора щёлочи для нефтей, с низким значением рН содержащейся в них воды, необходимо для обеспечения нейтральной среды, что положительно влияет на эффективность процесса. Кроме щёлочи и деэмульгатора в нефть добавляется отстоявшаяся вода, которая отводится из электродегидратора второй ступени и закачивается в инжектроный смеситель. Предусмотрена, также подача свежей воды массой до (7,5 ± 2,5) % от массы нефти. В смесителе нефть равномерно перемешивается со щёлочью с водой. Нефть поступает вниз электродегидратора через трубчатый распределитель. Обессоленная нефть выводится из электродегидратора сверху через коллектор. Благодаря такому расположению устройств ввода и вывода нефти обеспечивается равномерность потока по всему сечению аппарата. Отстоявшаяся вода через дренажные коллекторы поступает в канализацию или дополнительные отстойники. Из электродегидратора первой ступени сверху не полностью обезвоженная нефть поступает в электродегидратор второй ступени, с верха которого обессоленная и обезвоженная нефть отводится с установки в резервуары. А на комбинированных установках нефть подогревается и подаётся в ректификационную колонну атмосферной перегонки. Основными технологическими параметрами процесса электрообессоливания нефти являются: - температура и давление в электродегидраторах, - расход промывной воды, расход деэмульгатора; - также удельная производительность электродегидратора; - содержание хлоридов и воды на входе выходе блока ЭЛОУ; - содержание нефтепродукта в дренажной воде; - содержание деэмульгатора в дренажной воде. Как уже отмечалось, подогрев нефти до определенной оптимальной температуры снижает вязкость нефти, что облегчает седиментацию (осаждение) капель воды, способствует большей растворимости в нефти абсорбционных пленок и тем самым снижению их механической прочности. Одновременно при повышении температуры увеличивается скорость движения капель и вероятность их столкновения, что в конечном результате ускоряет их коалесценсию. В тоже время, с увеличением температуры растет упругость паров и соответственно повышается давление в аппаратах, резко увеличивается расход электроэнергии в электродегидраторах вследствие повышения электропроводности нефти, значительно усложняются работы проходных и подвесных изоляторов. Кроме того, повышение температуры влечет за собой дополнительные затраты на охлаждение дренируемой из электродегидраторов воды перед ее сбросом в канализацию. Для каждой нефти, в зависимости от ее свойств, имеется определенный технологический и технико-экономический оптимум температуры обессоливания Процесс обессоливания нефти связан с большим потреблением воды. На НПЗ обычно используют технологические конденсаты водяного пара, обратную воду, то есть применяется замкнутый цикл водоворота. Для сокращения расхода пресной воды и количества стоков на многих ЭЛОУ пресную воду подают только на последнюю ступень, а затем повторно используют дренажную воду с последующей ступени для промывки нефти в предыдущей. Такая схема позволяет значительно (в два - три раза) снизить потребление пресной воды и количество загрязненных стоков без ущерба для качества обессоливания. На современных ЭЛОУ получают нефти с показателями: - массовая концентрация солей, мг/дм3, не более 3?5 - массовая доля воды, %, не более 0,1 - массовая доля механических примесей, % отсутствуют. Поэтому чаще применяют на НПЗ комбинацию методов обессоливания и обезвоживания, например, на ЭЛОУ сочетается четыре фактора воздействия на эмульсию: подогрев, подача деэмульгатора, электрическое поле и отстой в гравитационном поле. Именно на ЭЛОУ закладываются основы качества выпускаемой продукции, формируются предпосылки благополучной жизнедеятельности сложного технологического оборудования. |