ЗАНЯТИЕ 5 Буферные растворы. Определение буферных систем и их классификация
Скачать 228.5 Kb.
|
Буферные растворыОпределение буферных систем и их классификацияМногие реакции в растворе протекают в нужном направлении только при определенной концентрации ионов Н+. Изменение её в ту или иную сторону от соответствующего оптимального значения приводит к появлению новых, часто нежелательных продуктов. В связи с этим, поддержание постоянного значения рН на протяжении всего времени осуществления реакции часто является важным условием ее успешного завершения. Особенно актуально это для биохимических процессов, протекающих в живых организмах. Большинство из них катализируется различными ферментами или гормонами, проявляющими свою биологическую активность только в строго определенном и достаточно узком интервале значений рН. Растворы, способные сохранять постоянной концентрацию ионов Н+ при добавлении к ним небольших количеств сильной кислоты или щелочи, а также при разбавлении, называются буферными растворами или буферными системами. Свойство данных растворов сохранять неизменным присущее им значение рН при вышеперечисленных обстоятельствах, называется иначе буферным действием. Буферные растворы в зависимости от своего состава делятся на 2 основных типа: кислотные и основные. Кислотные буферные системы обычно образованы слабой неорганической или органической кислотой и солью этой же кислоты с сильным основанием. Например:
С точки зрения теории Бренстеда-Лоури кислотной буферной системой является равновесная смесь слабой кислоты и сопряженного ей основания. Причем роль сопряженного основания играют образующиеся при диссоциации солей анионы слабых кислот. В связи с этим состав буферных растворов можно записать иначе:
Кислотная буферная система может быть образована и смесью двух солей многоосновной кислоты, соответствующих различным стадиям нейтрализации этой кислоты. В этом случае кислотный остаток одной из солей (менее замещенный) играет роль слабой кислоты, а кислотный остаток второй соли (более замещенный) – сопряженного ей основания. Примером таких систем могут служить: 1) карбонатная буферная система, представляющая собой смесь кислой (NaHCO3) и средней (Na2CO3) солей угольной кислоты
2) фосфатные буферные растворы
Следует отметить, что не только смеси, но и растворы некоторых индивидуальных солей (например: тетрабората натрия (Na2B4O7), карбоната аммония ((NH4)2CO3) и др.) тоже обладают буферными свойствами, которые объясняются сильным гидролизом этих солей и образованием вследствие этого компонентов, необходимых для буферного действия: (NH4)2CO3 + HOH ↔ NH4HCO3 + NH4OH Оснóвные буферные системы образованы слабым неорганическим или органическим основанием и солью этого основания с сильной кислотой. Например:
С точки зрения теории Бренстеда-Лоури оснóвная буферная система также представляет собой равновесную смесь слабой кислоты и сопряженного ей основания, только роль кислоты в данном случае выполняет образующийся при диссоциации соли катион:
Определенным буферным действием обладают также и растворы многих органических веществ, молекулы которых одновременно содержат в своем составе функциональные группы, проявляющие как слабые кислотные (СООН-группы), так и оснóвные (NH2-группы) свойства. По своей природе данные соединения являются амфолитами. К ним относятся аминокислоты, белки, пептиды. Таким образом, любая кислотно-основная буферная система является равновесной смесью, состоящей из донора и акцептора протонов. В такой системе, содержащей в своем составе слабую кислоту, различают общую, активную и потенциальную кислотности: 1) общая кислотность соответствует максимально возможной концентрации ионов Н+ в данном растворе, если теоретически предположить, что все имеющиеся в нем молекулы кислоты полностью распадутся на ионы, а гидролиз имеющейся соли можно не учитывать. Общая кислотность численно равна молярной концентрации химического эквивалента кислоты в растворе и определяется опытным путем (например с помощью титриметрического метода анализа); 2) активная кислотность равна концентрации (или активности) содержащихся «свободных» ионов Н+ (Н3О+), образовавшихся в результате диссоциации некоторого количества молекул кислоты; 3) потенциальная кислотность определяется совокупностью присутствующих в системе недиссоциированных молекул кислоты. Потенциальная кислотность может быть вычислена вычитанием из общей кислотности активной. Например, для ацетатного буфера все эти виды кислотности можно условно представить следующим образом:
По аналогии с растворами слабых кислот в растворах слабых оснований (оснóвные буферные системы) можно также различать общую, активную и потенциальную щелочность или оснóвность. |