Главная страница

водогрейный котел теория. Водогрейный котел. Определить основные технологические параметры для ведения процесса нагрева воды


Скачать 2.06 Mb.
НазваниеОпределить основные технологические параметры для ведения процесса нагрева воды
Анкорводогрейный котел теория
Дата21.09.2022
Размер2.06 Mb.
Формат файлаdocx
Имя файлаВодогрейный котел.docx
ТипДокументы
#689460
страница1 из 6
  1   2   3   4   5   6



Введение
В современной промышленности невозможно без применения более современных средств измерений. Применение автоматизации способствует росту производительности труда и коренным образом меняет роль человека в процессе производства.

При автоматизации повышается культурно-технический уровень работников, и создаются условия для ликвидации различий между умственным и физическим трудом.

Передовые области промышленности и энергетики немыслимы без широкой и полной автоматизации управления. Облегчая труд человека, повышая культуру человеческого труда во всех ее видах, устраняя различия между физическим и умственным трудом. Автоматизация в то же время в сотни раз повышает производительность труда, позволяет удовлетворить многообразные потребности человека. Автоматизация делает практически осуществимым целый ряд таких производств и новых видов технологий, которые без нее были бы невозможны.

Проблема исследования настоящей выпускной квалификационной работы – низкая автоматизация процесса нагрева воды, а от этого зависит качество готовой продукции.

Актуальность выпускной квалификационной работы заключается в том, что применение современной автоматизации водогрейного котла неразрывно связано с качеством конечного продукта.

Объектом исследования выпускной квалификационной работы является контроль и метрологическое обеспечение систем автоматизации водогрейного котла.

Предметом исследования дипломного проекта является процесс получения горячей воды с помощью водогрейного котла КВГМ-10-150.

Целью дипломного проекта является автоматизация процесса нагрева воды современным оборудованием для получения более качественного продукта.

Задачами дипломного проекта являются:

  • изучить технологический процесс производства горячей воды.

  • определить основные технологические параметры для ведения процесса нагрева воды,

  • разработать функциональную схему автоматизации процесса получения горячей воды,

  • обосновать выбор средств автоматизации применяемых в процессе получения горячей воды,

  • разработать схему общего вида щита управления и монтажно-коммутационную схему панели,

  • разработать мероприятия по охране окружающей среды.

  • рассчитать и выбрать регулирующий орган ;

  • рассчитать тип сужающего устройства расходомера;

  • рассчитать измерительную схему автоматического потенциометра;

  • рассчитать устойчивость автоматического регулятора;

  • рассчитать эффективность применения средств автоматизации в процессе нагрева воды;

В данном дипломном проекте использованы следующие методы исследования:

  • анализ справочной литературы и нормативно-технической документации;

  • изучение, обобщение и сравнение технологий и технических характеристик;

  • моделирование схемы автоматизации технологического процесса.

Работа состоит из введения, четырнадцать разделов и списка литературы.

Введение раскрывает актуальность, объект, предмет, цель. Задачи и методы исследования. В первом разделе рассматриваются вопросы, связанные с описанием хода технологического процесса. Во втором разделе изложено обоснование выбора регулируемых величин в производстве нагрева воды. В третьем разделе изложено обоснование выбора контролируемых и сигнализируемых величин. В четвертом разделе обоснован выбор средств автоматизации, а в пятом приведена спецификация. В шестом разделе представлено описание выбранной системы автоматического контроля. В седьмом разделе описана электрическая схема. В восьмом – приведены расчеты. В девятом разделе обоснованы средства монтажа автоматизации. В десятом изложена эксплуатация автоматизации. В одиннадцатом пункте заполнен трубно-кабельный журнал. В двенадцатом пункте представлен экономический расчет. В тринадцатом пункте изложена техника безопасности, а в четырнадцатом – охрана окружающей среды.

Пояснительная записка составлена в соответствии с требованиями технических документов, представлен список используемой литературы.

1 Характеристика объекта автоматизации.
Исходные продукты – вода, воздух, газ. Готовый продукт – горячая вода.Вода – жидкость, не имеющая цвета и запаха. Химическая формула – H2O. Вода, поступающая в котел, проходит химическую очистку и деаэрацию, и не должна содержать соли, газы. Основные показатели воды после очистки поступающей в котел: жесткость не более 20 мкг.экв/кг, солесодержание 245 мг/кг, щелочность pH =7, содержание углекислоты недопустимо, содержание O2 до 30 мкг/кг, вязкость μ=0,135 спз, плотность ρ=1006,7 кг/м3.Газ используется природный. Газовое топливо , представляет собой смесь горючих и негорючих газов (метан, этан, пропан, бутан, водород, окись углерода, азот, углекислый газ, кислород). Основным элементов газовой смеси является метан. Это газ без цвета, почти без запаха, практически нерастворим в воде, химически малоактивен. Химическая формула CH4. Жаропроизводительность газа2040 °С. Плотность газа – в 2 раза легче воздуха. Теплота сгорания: QH=8500 ккал/м3, QВ=9500 ккал/м3. Пределы воспламенения: нижний 5%, верхний 15%.

В состав воздуха входят:

азот 78,8%;

кислород 20,95%;

инертные газы 0,94%;

углекислый газ 0,03%.

Готовым продуктом является вода с температурой 150 °С, расходом 5 м 3/ч. Эта вода используется для горячего водоснабжения и отопления.

Водогрейный котел КВГП-10 -150 предназначен для нагрева воды, которая используется для горячего водоснабжения и отопления. Вода, идущая к потребителю, называется прямой, а возвращающая обратно от потребителя в котел – обратной. Вода используется химически очищенная, так как содержащиеся в природной воде растворимые газы (кислород и углекислота) разрушают металл котельного агрегата и трубопроводы. Также использование природной воды приводит к отложению накипи, которая вызывает перегрев металла вследствии ухудшения отвода тепла. Для восполнения неизбежных потерь воды, требуется вода для подпитки обратной воды. Питательная вода применяется химически очищенная. Нагрев воды происходит за счет тепла, выделяющегося при сжигании топлива. Вода в котел поступает с температурой 75°С и нагревается до температуры 150°С.Горение – это процесс химической реакции соединений горючих элементов газа с кислородом, способствовавшему повышению температуры и происходящему с выделением тепла. Процесс горения газообразного топлива состоит из образования горючей смеси, нагревании ее до температуры воспламенения и горения. К горелке котла подводятся газ и воздух. Воздух подается дутьевым вентилятором .Горючая смесь, которая образуется в горелке, воспламеняется и отдает тепло в топочную камеру. В результате процесса горения образуются газообразные продукты – дымовые газы. Их отсасывает дымосос, а затем выбрасывает в атмосферу . Сжигание осуществляется факельным способом. При сжигании газового топлива необходимо обеспечить: хорошее предварительное перемешивание газа с воздухом, ведение процесса с малыми избытками воздуха, разделение потока смеси на отдельные струи. Подогрев газовоздушной смеси и химическая реакция горения протекают очень быстро.
Основным фактором длительности горения является время, затраченное на перемешивание газа с воздухом в горелке. От быстроты и качества перемешивания газа с необходимым количеством воздуха, зависит скорость и полнота сгорания газа, длина факела топки и температура пламени. Для процесса горения дымососом создается необходимое разряжение и обеспечивается полное удаление продуктов сгорания. Если достигнуть соотношения расхода воздуха в соответствии с подачей топлива, процесс сжигания будет осуществляться с максимальной экономичностью.

Водогрейный котел КВГМ-10-150 представляет собой теплообменное устройство с принудительной циркуляцией воды, оборудованный отдельным дымососом и вентилятором.

Теплопроизводительность-10 Гкал/ч.

Площадь поверхности нагрева:

радиационная -89 м2;

конвективная -141,9 м2.

Температура воды:

на входе в котел -75 С;

на выходе из котла -150 С.

Давление воды:

на входе -16 кгс/см2;

на выходе - 10 кгс/см2.

Давление газа перед горелками -2330 кгс/м2.

Ширина котла -3,84 м

Длина -4,90 м

Высота- 4,75 м.

Масса металлической части -11,8 т.

Особенностью конструкции котла является наличие трех ступенчатых экранов, которые делят топку на четыре отсека. Кроме того, в топке размещены боковые и потолочные экраны, последний переходит частичново фронтовой экран. Ширина отсеков 740 мм.Топка котла выполнена в виде прямоугольной шахты. Плотное экранирование позволило применить печную натрубную обнуровку.

Котлы отличаются сильно развитой поверхностью нагрева. Конвективная поверхность нагрева размещена в газоходе и представляет змеевиковый экономайзер, состоящий из 16 секций. Секции набирают таким образом, чтобы змеевики располагались параллельно фронту котла в шахматном порядке. Для сжигания газа установлены горелки с прямой щелью, заканчивающейся расширением. Горелки размещены между вертикальными топочными экранами. Продукты горения поступают из топки в конвективный газоход через проем высотой 100 мм в верхней части, под разделительной стенкой.





Рисунок 1. Общий вид водогрейного котла

2 Контроль выбора регулируемых величин

2.1 Перечень регулируемых величин
Из многих параметров характеризующих процесс, необходимо выбрать те, которые подлежат регулированию и изменением которых целесообразно вносить регулирующее воздействие. Для этого необходимы результаты анализа целевого назначения процесса. Исходя из результатов, анализа выбирают критерий управления, его заданное значение и параметры, изменением которых наиболее целесообразно на него воздействовать. Последнее осуществляется на основе статических и динамических характеристик процесса, дающих представление о взаимозависимости параметров. Показателем эффективности работы водогрейного котла является температура прямой воды.

На нее действуют следующие возмущения:

расход воды через котел;

расход топлива;

расход воздуха;

разряжение;

температура обратной воды.

Стабилизировать, т.е. устранить все возмущения нельзя, т.к. расход топлива, расход воздуха и разряжение взаимосвязаны. Устранить можно только одно возмущение – расход воды через котел. Расход воды стабилизируется при помощи подпитки обратной воды химически-очищенной водой. Кроме того, температура прямой воды должна изменяться в зависимости от температуры наружного воздуха. Анализируя эти возмущения, можно прийти к выводу, что экономически целесообразным будет использование в качестве регулирующего воздействия изменение подачи топлива. В котельной одновременно работают 2 котла, поэтому целесообразно использовать каскадно-связанное регулирование с главным регулятором. Он воспринимает изменение температуры наружного воздуха и температуры прямой воды, т.е. в общем коллекторе. Воздействует главный регулятор на регуляторы топлива всех котлов. Кроме того, на регулятор топлива подается сигнал от датчика температуры воды за котлом и от датчика температуры обратной воды. Таким образом, подача топлива изменяется в зависимости от температуры наружного воздуха, температуры в общем коллекторе, температуры воды за котлом и температуры обратной воды. Воздух должен подаваться в таком количестве, чтобы обеспечить полное сжигание топлива. Если воздуха недостаточно, то кроме неполноты сжигания, т.е. экономических потерь будет загрязнение атмосферы. Если воздуха будет избыток, то будет унос тепла в трубу. Таким образом, необходимо регулировать соотношение "топливо-воздух". Топливо может идти разного качества, и расчетный коэффициент соотношения может оказаться не оптимальным. Для повышения качества необходимо контролировать полноту сжигания топлива по содержанию кислорода в дымовых газах. Таким образом, регулятор воздуха будет изменять подачу воздуха в зависимости от расхода топлива, расхода воздуха, с коррекцией по содержанию кислорода в дымовых газах. В данном проекте изменение расхода воздуха затруднительно, так как сечение воздуховода прямоугольное. Тогда регулирование ведется по косвенному параметру – давлению воздуха.

Для процесса горения в топке должно быть создано разряжение, если оно будет недостаточным, то возможно погасание пламени. Если слишком велико, то отрыв пламени от горелки.

Разряжение в проекте регулируется в зависимости от расхода воздуха, изменением производительности дымососа.

Итак, в проекте используются следующие САР:

1. САР температуры прямой воды с коррекцией по температуре обратной воды, температуры наружного воздуха изменением расхода топлива в зависимости от температуры в общем коллекторе;

2. САР давление воздуха с коррекцией по содержанию O2 в дымовых газах и по расходу топлива, изменением подачи воздуха;

3. САР разряжения в топке котла с коррекцией по расходу воздуха, изменением производительности дымососа;

4 .САР обратной воды, подачей питательной воды.

3 Контроль выбора контролируемых и сигнализируемых величин

3.1 Обоснование контролируемых величин
Контролю подлежат те параметры, по значениям которых осуществляется оперативное управление технологическим процессом, а также его пуск и остановка. К таким параметрам относятся все режимные и выходные параметры, а также входные параметры, при изменении которых в объект будут поступать возмущения. Обязательному контролю подлежат параметры, значения которых регламентируются технологической картой.

Контролю подлежат все регулируемые параметры:

    • расход обратной воды;

    • температура обратной воды;

    • температура прямой воды;

    • давление воздуха;

    • концентрация кислорода в дымовых газах;

    • разряжение в топке котла;

    • температура воды в коллекторе.

Кроме регулируемых параметров контролю подлежат следующие:

    • расход газа;

    • давление воды на входе и выходе из котла;

    • расход воды в коллекторе и расход прямой воды;

    • температура дымовых газов за котлом;

    • давление воздуха после дутьевого вентилятора;

    • давление газа;

    • разряжение перед дымососом;

    • содержание метана в помещении;

    • наличие пламени.

Контроль расхода газа и расхода воды необходим для расчета технико-экономических показателей. Контроль давления воды необходим для того, чтобы определить, есть ли расход воды через котел. При уменьшении расхода давление понижается. Контроль давления воздуха после дутьевого вентилятора необходим для определения работы вентилятора. Понижение давления воздуха происходит в случае отключения вентилятора или закрытия его направляющего аппарата при неисправности регулятора воздуха. При понижении давления воздуха может произойти отрыв факела или его погасание. Так как в момент отключения вентилятора воздух в топку не поступает, разряжение увеличивается, происходит отрыв факела. Понижение давления газа ниже допустимого приводит к погасанию факела. Поэтому давление топлива необходимо контролировать. При повышенных разряжениях в газоходе будет велик присос наружного воздуха через всякого рода неплотностях в обмуровке, это ухудшит условия теплопередачи, снизится производительность за счет повышенной потери с отходящими газами. Поэтому необходим контроль разряжения перед дымососом. Метан в смеси с воздухом создают взрывоопасную газовоздушную смесь, взрывающуюся от источника открытого огня. Она действует на человека удушающе и отравляюще, поэтому необходимо контролировать содержание метана CH4 в помещении. При погасании факела, топка котла и помещение заполняются газом, и может произойти взрыв.

Для предотвращения этого предусмотрен контроль по наличию пламени в топке котла. Сигнализации подлежат все параметры, изменения которых могут привести к аварии, несчастным случаям или серьезному нарушению технологического режима.

К ним относятся:

    • повышение температуры воды за котлом;

    • понижение и повышение давления газа;

    • понижение давления воды в обратном трубопроводе;

    • наличие пламени;

    • повышение метана CH4 в помещении;

    • понижение давления воздуха;

    • повышение разряжения дымовых газов;

    • понижение расхода газа;

    • повышение кислорода в дымовых газах.

Оперативный технологический персонал при оповещении его устройствами сигнализации о нежелательных событиях должен принять соответствующие меры по их ликвидации. Если эти меры окажутся не эффективными и параметр, характеризующий состояние ТОУ достигнет аварийного значения, должны сработать системы противоаварийной защиты, которые автоматически по заданной программе перераспределяют материальные и энергетические потоки, включают и отключают аппараты объекта с целью предотвращения взрыва, аварии, несчастного случая, выпуска большого количества брака.Котел подлежит защите при отклонении следующих параметров:

    • повышение температуры воды за котлом;

    • повышение или понижение давления воды за котлом;

    • понижение давления воздуха;

    • повышение или понижение давления газа;

    • уменьшение разряжения в топке котла;

    • повышение давления обратной воды;

    • погасание факела в топке котла.

Защита заключается в автоматическом прекращении подачи топлива при отклонении любого из вышеперечисленных параметров.
4 Контроль выбора средств автоматизации
Средства автоматизации должны быть выбраны технически грамотно и экономически обосновано. Конкретный тип автоматического устройства выбирают с учетом особенностей объекта управления и принятой системы управления. При этом предпочтение следует отдавать однотипным, централизованным и серийно выпускаемым устройствам. Это значительно упростит поставку и эксплуатации. В связи с тем, что процесс нагрева воды не относится к числу пожаро- и взрывоопасных, автоматизация осуществляется на основе использования электрических средств. Электрические приборы более точны и отличаются быстродействием по сравнению с пневматическими. Источники энергии у электрических средств автоматизации более просты и надежны. Также отсутствуют ограничения по расстоянию между усилителем и исполнительным механизмом. Электрические регуляторы позволяют легко суммировать различные импульсы. Система построена по блочно-модульному принципу. Связь между блоками и модулями осуществляется с помощью сигналов постоянного тока, а точный сигнал легче преобразовать, суммировать и можно использовать многократно. Для регулирования используются регуляторы А – 100. Они обладают высокой точностью и выполняют следующие функции: масштабирование сигнала от датчика, алгебраическое суммирование, введение сигнала задания, формируют и усиливают сигнал расслаивания, световую индикацию выхода. В качестве датчиков расхода и давления используются измерительные преобразователи типа "Сапфир-22" различных модификаций, так как они имеют тоновый сигнал на входе, который можно передавать и на регулятор и на вторичный прибор. Для питания стабилизированным напряжением постоянного тока 36В комплекса тензорезисторных измерительных преобразователей теплоэнергетических параметров "Сапфир-22" используется блок питания типа IP -44, восьмиканальный, учитывая что у датчиков 6. В качестве вторичных приборов лучше использовать регистрирующие приборы типа МП4У. Он работает с любыми датчиками и может измерять любые величины. Одновременно он может выполнять функции показания, регистрации, сигнализации, регулирования и преобразования. Для регулирования температуры прямой воды изменением расхода газа в зависимости от температуры в общем коллекторе, в качестве чувствительного элемента используется термопреобразователь сопротивления типа ТСМ – 1388. Используется медный.

В качестве поворотно-регулирующей заслонки выбирается ПРЗ-150, которая выбирается в зависимости от давления и диаметра трубопровода. Для регулирования давления воздуха в зависимости от расхода топлива и содержания кислорода в дымовых газах, в качестве измерительного преобразователя давления воздуха используется преобразователь типа Сапфир-22. Вторичный прибор, который работает в комплекте с преобразователем давления МП4У. В системе автоматического регулирования разряжения в топке котла отводом дымовых газов в качестве преобразователя разряжения применяется преобразователь типа Сапфир-22ДВ-2220 . Для систем защиты выбираются датчики-реле. В качестве датчика-реле давление обратной воды, давление питательной воды, давление воздуха, давление газа – ДПЗ-01.В качестве датчика-реле разряжения в топке котла ДКП-ГМ.В качестве датчика-реле температуры питательной воды – БТ-51.211.0.
5 Метрологическое обеспечение средств автоматизации
Барабанам котла с естественной циркуляцией присуща значительная аккумулирующая способность, которая проявляется в переходных режимах. Если в стационарном режиме положение уровня воды в барабане котла определяется состоянием материального баланса, то в переходных режимах на положение уровня влияет большое количество возмущений. Основными из них являются .изменение расхода питательной воды, изменение паросъема котла при изменении нагрузки потребителя, изменение паропроизводительности при изменении при изменении нагрузки топки, изменение температуры питательной воды.

Регулирование соотношения газ-воздух необходимо как чисто физически, так и экономически. Известно, что одним из важнейших процессов, происходящих в котельной установке, является процесс горения топлива. Химическая сторона горения топлива представляет собой реакцию окисления горючих элементов молекулами кислорода. Для горения используется кислород, находящийся в атмосфере. Воздух в топку подается в определенном соотношении с газом посредством дутьевого вентилятора. Соотношение газ-воздух примерно составляет 1.10. При недостатке воздуха в топочной камере происходит неполное сгорание топлива. Не сгоревший газ будет выбрасываться в атмосферу, что экономически и экологически не допустимо. При избытке воздуха в топочной камере будет происходить охлаждение топки, хотя газ будет сгорать полностью, но в этом случае остатки воздуха будут образовывать двуокись азота, что экологически недопустимо, так как это соединение вредно для человека и окружающей среды.

Система автоматического регулирования разряжения в топке котла сделана для поддержания топки под наддувом, то есть чтобы поддерживать постоянство разряжения(примерно 4мм.вод.ст.). При отсутствии разряжения пламя факела будет прижиматься, что приведет к обгоранию горелок и нижней части топки. Дымовые газы при этом пойдут в помещение цеха, что делает невозможным работу обслуживающего персонала.

В питательной воде растворены соли, допустимое количество которых определяется нормами. В процессе парообразования эти соли остаются в котловой воде и постепенно накапливаются. Некоторые соли образуют шлам – твердое вещество, кристаллизующееся в котловой воде. Более тяжелая часть шлама скапливается в нижних частях барабана и коллекторов.

Повышение концентрации солей в котловой воде выше допустимых величин может привести к уносу их в пароперегреватель. Поэтому соли, скопившиеся в котловой воде, удаляются непрерывной продувкой, которая в данном случае автоматически не регулируется. Расчетное значение продувки парогенераторов при установившемся режиме определяется из уравнений баланса примесей к воде в парогенераторе. Таким образом, доля продувки зависит от отношения концентрации примесей в воде продувочной и питательной. Чем лучше качество питательной воды и выше допустимая концентрация примесей в воде, тем доля продувки меньше. А концентрация примесей в свою очередь зависит от доли добавочной воды, в которую входит, в частности, доля теряемой продувочной воды.


6 Контроль работы электрической схемы технологической
Правильно построенные схемы обеспечивают четкую сигнализацию, способствуют предотвращению аварий и несчастных случаев. Схема сигнализации должна обеспечивать одновременную подачу светового и звукового сигналов, съем звукового сигнала, повторность срабатывания исполнительного устройства звуковой сигнализации после его отключения нажатием кнопочного выключателя; проверку исполнительного устройства сигнализаторов от одного кнопочного выключателя. В проекте сигнализация осуществляется с помощью схемы импульсной сигнализации. Пусть, например, температура прямой воды стала выше допустимого значения, замыкается контакт Р1, загорается лампа ML1 и начинается заряжаться конденсатор C1. Импульс тока зарядки заставляет кратковременно сработать реле K2; контакт К2 (строка 4) включает реле К1. Контакт К1 (строка 3) ставит реле К1 на самоблокировку, а контакт К1 (строка 2) включит звонок НА. После импульса тока реле К2 обесточится и будет готово принять сигнал от других датчиков. Для отключения звонка необходимо нажать кнопочный выключатель SB2, реле К1 обесточится и контакты К1 (строки 3 и 2) разомкнуться. Первый контакт предотвратит включение реле К1 после опускания выключателя SNB2, а второй выключит звонок. Для проверки исправности звонка и ламп нажимают кнопочный выключатель SB1. Резистор Р1 позволяет конденсатору C1 разрядиться при размыкании контакта Р1 с тем, чтобы цепь была готова вновь сработать при повторном замыкании контакта Р1. Диод UD1 предотвращает включение всех остальных ламп, кроме лампы HL1, если замкнется только контакт Р1. Диод VD2 служит для выпрямления тока. Лампа HL11 сигнализирует о наличии напряжения питания в схеме.

Автоматика безопасности предназначена для контроля за основными параметрами котла и отключения его при отклонении этих параметров за пределы допустимых значений. Действие защиты сводится к отсечке газа, подаваемого в топку котла, этим самым предотвращается возможное развитие аварии.

Пусть температура прямой воды стала выше заданного, контакт Р11 (строка 36) замыкается, под напряжением обмотка реле К3 (строка 36), оно срабатывает. Замыкается его контакт К3 (строка 44), под напряжением обмотка реле защиты К11 (строка 48), оно срабатывает. Контакт К11 (строка 54) размыкается, обмотка клапана отсекателя К12 (строка 54) обесточивается. Его затвор под действием собственного веса и возвратной пружины падает, прекращая подачу газа. Кнопка SB3 необходима для осуществления отсечки газа вручную, независимо от изменения параметра. Для остановки котла нажимают кнопку SB3, реле защиты К11 под напряжением, его контакт К11 (строка 54) размыкается, обмотка реле клапана-отсекателя К12 обесточивается, клапан закрывается, прекращая подачу. Если необходимо осуществить пуск котла независимо от изменения параметра, нажимают кнопку SB4, обмотка реле К12 под напряжением, сердечник втягивается, открывая клапан.


7 Расчеты автоматических устройств

7.1. Расчет сужающего устройства расходомера
Цель расчета:

Выбор типа сужающего устройства.

Выбор типа дифманометра.

Определение диаметра отверстия сужающего устройства.

Исходные данные:

Вещество: вода

Температура: t =80 oC

Абсолютное давление: Pк =4,0 кгс/м2

Внутренний диаметр трубы: Dтр = 50 мм

Максимальный объёмный расход: Q0 max=200 м3/ч

Минимальный объёмный расход: Q0 min= 50 м3/ч

Допустимые потери в сужающем устройстве: Pn = 5,8 кгс/см2

Имеющийся прямой участок трубы: L1/ Dтр= 35

Перед сужающем устройством стоит вентиль

Принцип действия основан на зависимости перепада давления на сужающем устройстве (СУ) от расхода.

Расчёт

Определяем для расчета плотность и динамическую вязкость ( Павлов К. Ф., Романков П.Г., Носков А.А.

«Примеры и задачи по курсу процессов и аппаратов в химической технологии» 1976 год стр. 327)

ρ =971, μ =0,3565

Выбираем сужающее устройство – нормальная диафрагма.

Выбираем тип дифманометра – мембранный.

Определяем максимальный массовый расход.

QМ max= Q0 max. ρ

QМ max=
  1   2   3   4   5   6


написать администратору сайта