Главная страница
Навигация по странице:

  • Невозможный трезубец («чертова вилка»).

  • Треугольник Реутерсварда

  • Гиперкуб (тессеракт).

  • Бутылка Клейна

  • Многогранники

  • Форма пространства

  • Самовоспроизведение и информация

  • Оптико- геометрические иллюзии. Оптикогеометрические иллюзии Введение


    Скачать 159 Kb.
    НазваниеОптикогеометрические иллюзии Введение
    АнкорОптико- геометрические иллюзии
    Дата13.09.2022
    Размер159 Kb.
    Формат файлаdoc
    Имя файлаОптико- геометрические иллюзии.doc
    ТипУрок
    #675590
    страница2 из 3
    1   2   3

    Невозможные фигуры – геометрические объекты, нарисованные на бумаге, которые производят впечатление обычной проекции трехмерного объекта, однако, при внимательном рассмотрении становятся видны противоречия в соединениях элементов фигуры.

    Невозможный трезубец («чертова вилка»).

    Если закрыть рукой верхнюю часть трезубца, то мы увидим вполне реальную картину - три круглых зуба. Если закрыть нижнюю часть трезубца, то мы тоже увидим реальную картину - два прямоугольных зубца. Но, если рассматривать всю фигуру целиком, то получается что три круглых зубца постепенно превращаются в два прямоугольных.

    Таким образом, можно увидеть, что передний и задний планы данного рисунка конфликтуют. То есть, то что было изначально на переднем плане уходит назад, а задний план (средний зуб) вылезает вперед.

    Кроме смены переднего и заднего планов в данном рисунке присутствует еще один эффект  – плоские грани верхней части трезубца становятся круглыми в нижней.

    Треугольник Реутерсварда

    В 1934 году Оскар Реутерсвард (Oscar Reutersvard) создал первый невозможный треугольник, составленный из серии кубиков. Хотя многие художники создавали невозможные фигуры, именно Реутерсвард открыл новый мир фантазий. С тех пор Реутерсвард создал тысячи невозможных фигур. Сегодня он известен как "отец невозможных фигур". В 1980 году Шведское правительство решило разместить невозможный треугольник Реутерсварда на почтовых марках, которые выпускались с 1982 года примерно два года.

    Гиперкуб (тессеракт).

    В геометрии гиперкуб - это n-мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

    Тессеракт относится к кубу, как куб относится к квадрату.

    Бутылка Клейна

    Бутылка Клейна является односторонней поверхностью и в трехмерном пространстве имеет линию самопересечения (без самопересечения может быть построена только в четырехмерном пространстве).

    Знакомство с невозможными фигурами открыло для нас новый невозможный мир – мир математиков, исследователей и художников.

    МорицКорнелисЭшер — уникальный художник. Его картины не забудет никто, если видел их хотя бы раз. На первый взгляд, это просто красивая картинка, но стоит присмотреться, и ты понимаешь, что то, что так чудесно нарисовал этот гениальный художник, попросту невозможно в нашем мире. Он «увидел» это исключительно в собственном воображении…

    МорицКорнелисЭшер родился 17 июня 1898 года в Нидерландах в Ливердене, он младший сын в семье инженера-гидравлика Г. А. Эшера и Сары Гличман. В 1921 году его работа была впервые опубликована в журнале, это была работа «Пасхальные цветы» (гравюра на дереве). В 1924 году прошла его первая персональная выставка в Гааге. В этом же году, в мае, прошла очень успешная выставка в Риме. Позднее Эшер имеет постоянную выставку в Голландии и, в основном, положительные отзывы. Но все это были еще обычные картины. А свои знаменитые «несуществующие миры» Эшер начинает рисовать примерно в 1938 году, постепенно полностью уходя от изображения натуры. Еще через десять лет он начинает читать лекции о своих работах (с их демонстрацией) у себя на родине, в Голландии, куда его семья вернулась в 1941 году. Еще через двадцать лет в честь его семидесятилетия в Гааге проходит громадная ретроспектива его работ. В 1972 году М. К. Эшер умирает в лютеранской больнице Хилверсума.

    Художник и, как настойчиво считают многие, математик (кстати, наиболее преданными поклонниками работ Эшера являются именно математики) Эшер прожил долгую и внешне достаточно спокойную, по большей части, жизнь. У него была любящая супруга, дети… Но жил он не только этим миром. Часть сознания Эшера была отдана другим, невозможным в нашей реальности, мирам, единственное воплощение которых — его картины.

    В процессе своей работы он черпал идеи из математических статей, в которых рассказывалось о мозаичном разбиении плоскости, проецировании трехмерных фигур на плоскость и неевклидовой геометрии. Он был очарован всевозможными парадоксами и в том числе «невозможными фигурами». Парадоксальные идеи выдающегося математика нашего времени Роджера Пенроуза были использованы во многих работах Эшера. Наиболее интересными для изучения идеями Эшера являются всевозможные разбиения плоскости и логика трехмерного пространства. Рядовому же любителю необычайного искусства Эшера будет интересно узнать немного «технических подробностей» его работ.

    Мозаики

    Регулярное разбиение плоскости, называемое «мозаикой», — это набор замкнутых фигур, которыми можно замостить плоскость без пересечений фигур и щелей между ними. Обычно в качестве фигуры для составления мозаики используют простые многоугольники, например квадраты или шестиугольники. Но Эшер интересовался всеми видами мозаик — регулярными и нерегулярными (нерегулярные мозаики образуют неповторяющиеся узоры), — а также ввел собственный вид, который назвал «метаморфозами», где фигуры изменяются и взаимодействуют друг с другом, а иногда изменяют и саму плоскость.

    Математики доказали, что для регулярного разбиения плоскости подходят только три правильных многоугольника: треугольник, квадрат и шестиугольник. Нерегулярных вариантов разбиения плоскости гораздо больше, в частности, иногда используются нерегулярные мозаики, в основу которых положен правильный пятиугольник. Эшер использовал базовые образцы мозаик, применяя к ним трансформации, которые в геометрии называются симметрией, отражение, смещение и др. Также он исказил базовые фигуры, превратив их в животных, птиц, ящериц и проч. Эти искаженные образцы мозаик имели трех-, четырех- и шестинаправленную симметрию, таким образом сохраняя свойство заполнения плоскости без перекрытий и щелей.

    В гравюре «Рептилии» маленькие крокодилы играючи вырываются из тюрьмы двухмерного пространства стола, проходят кругом, чтобы снова превратиться в двухмерные фигуры. Мозаику рептилий Эшер использовал во многих своих работах.

    Многогранники

    Правильные геометрические тела — многогранники — имели особое очарование для Эшера. Во многих работах многогранники являются главной фигурой, и в еще большем количестве работ они встречаются в качестве вспомогательных элементов. Существует лишь пять правильных многогранников, то есть таких тел, все грани которых состоят из одинаковых правильных многоугольников. Они еще называются телами Платона. Это — тетраэдр, гранями которого являются четыре правильных треугольника, куб с шестью квадратными гранями, октаэдр, имеющий восемь треугольных граней, додекаэдр, гранями которого являются двенадцать правильных пятиугольников, и икосаэдр с двадцатью треугольными гранями. На гравюре «Четыре тела» Эшер изобразил пересечение основных правильных многогранников, расположенных на одной оси симметрии, кроме этого многогранники выглядят полупрозрачными, и сквозь любой из них можно увидеть остальные.

    Большое количество различных многогранников может быть получено объединением правильных многогранников, а также превращением многогранника в звезду. Для преобразования многогранника в звезду необходимо заменить каждую его грань пирамидой, основанием которой является грань многогранника. Изящный пример звездчатого додекаэдра можно найти в работе «Порядок и хаос».

    Фигуры, полученные объединением правильных многогранников, можно встретить во многих работах Эшера. Наиболее интересной среди них является гравюра «Звезды», на которой можно увидеть тела, полученные объединением тетраэдров, кубов и октаэдров. Если бы Эшер изобразил в данной работе лишь различные варианты многогранников, мы никогда бы не узнали о ней. Но он по какой-то причине поместил внутрь центральной фигуры хамелеонов, чтобы затруднить нам восприятие всей фигуры. Таким образом, нам необходимо отвлечься от привычного восприятия картины и попытаться взглянуть на нее свежим взором, чтобы представить ее целиком. Этот аспект данной картины является еще одним предметом восхищения математиков творчеством Эшера.

    Форма пространства

    Среди наиболее важных работ Эшера с математической точки зрения являются картины, оперирующие с природой самого пространства. Литография "Три пересекающиеся плоскости" - хороший пример для начала обзора таких картин. Этот пример демонстрирует интерес художника к размерности пространства и способность мозга распознавать трехмерные изображения на двухмерных рисунках. Как будет ниже, Эшер позже использовал данный принцип для создания изумительных визуальных эффектов.

    Под влиянием рисунков в книге математика Х. КоксетераЭшер создал много иллюстраций гиперболического пространства. Один из примеров можно увидеть в работе "Предел круга III". Здесь представлен один из двух видов неевклидового пространства, описанных французским математиком Пуанкаре. Чтобы понять особенности этого пространства, представьте, что вы находитесь внутри самой картины. По мере вашего перемещения от центра круга к его границе ваш рост будет уменьшаться также, как уменьшаются рыбы на данной картине. Таким образом путь, который вам надо будет пройти до границы круга будет казаться вам бесконечным. На самом деле, находясь в таком пространстве вы на первый взгляд не заметите ничего необычного в нем по сравнению с обычным евклидовым пространством. Например, чтобы достичь границ евклидового пространства вам также необходимо пройти бесконечный путь. Однако, если внимательно присмотреться, то можно будет заметить некоторые отличия, например, все подобные треугольники имеют в этом пространстве одинаковый размер, и вы не сможете там нарисовать фигуры с четырьмя прямыми углами, соединенными прямыми линиями, так как в этом пространстве не существует квадратов и прямоугольников. Странное место, не правда ли?

    Еще более странное пространство показано в работе "Змеи". Здесь пространство уходит в бесконечность в обе стороны - и в сторону края окружности и в сторону центра окружности, что показано уменьшающимися кольцами. Если вы попадете в такое пространство, на что оно будет похоже?

    Кроме особенностей евклидовой и неевклидовой геометрий Эшера интересовали визуальные аспекты топологии. Топология изучает свойства тел и поверхностей пространства, которые не изменяются при деформации, например,  растяжении, сжатии или изгибе. Единственное, к чему не должна приводить деформация - это к разрыву. Топологам приходится изображать множество странных объектов. Одним из наиболее известных является лента Мебиуса, которая встречается во многих работах Эшера. Это может показаться странным, но у этой поверхности есть только одна сторона и одна кромка. Если вы проследите путь муравьев на литографии "Лента Мебиуса II", то увидите, что муравьи ползут не по противоположным поверхностям ленты, а по одной и той же. Сделать лист Мебиуса очень просто. Надо взять полоску бумаги, изогнуть ее, и склеить противоположные края ленты клеем. Как вы думаете, что случится, если разрезать лист Мебиуса вдоль?

    Другая интересная литография назавается "Картинная галерея", в которой изменены одновременно и топология и логика пространства. Мы видим мальчика, который смотрит на картину, на которой нарисован приморский город с магазином на берегу, а в магазине - картинная галерея, а в галерее стоит мальчик, который смотрит на картину, на которой нарисован приморский город ... стоп! Что-то не так...




    Для понимания любой картины Эшера требуется внимание и наблюдательность, а эта работа требует особого внимания. Каким-то образом Эшер завернул пространство в кольцо, и получилось, что мальчик находится одновременно внутри картины и вне ее. Секрет этого эффекта состоит в том, каким образом преобразовано изображение. Понять это можно, анализируя карандашный набросок сетки, которым пользовался Эшер при создании картины. Обратите внимание, что расстояние между линиями сетки увеличивается в направлении движения стрелки часов. Заметим еще, на чем основана хитрость картины - белое пятно в центре. Математики называют это пятно особым местом или особой точкой, где пространства не существует. Не существует способа изобразить этот участок картины без швов или наложений, поэтому Эшер решил эту проблему, поместив в центр картины свой автограф.

    Эшер понимал, что геометрия определяет логику пространства, но и логика пространства определяет геометрию. Одна из наиболее часто используемых особенностей логики пространства — игра света и тени на выпуклых и вогнутых объектах. На литографии «Куб с полосками» выступы на лентах являются визуальным ориентиром того, как расположены полоски в пространстве и как они переплетаются с кубом. И если вы верите своим глазам, то вы никогда не поверите тому, что нарисовано на этой картине.

    Еще один из аспектов логики пространства — перспектива. На рисунках, в которых присутствует эффект перспективы, выделяют так называемые точки исчезновения, которые сообщают глазу человека о бесконечности пространства. Изучение особенностей перспективы началось еще во времена возрождения художниками Альберти, Дизаргом и многими другими. Их наблюдения и выводы легли в основу современной геометрии проекций.

    Вводя дополнительные точки исчезновения и немного изменяя элементы композиции для достижения нужного эффекта, Эшер смог изобразить картины, в которых изменяется ориентация элементов в зависимости от того, как зритель смотрит на картину. На картине «Cверху и cнизу» художник разместил сразу пять точек исчезновения — по углам картины и в центре. В результате если мы смотрим на нижнюю часть картины, то создается впечатление, что мы смотрим вверх. Если же обратить взгляд на верхнюю половину картину, то кажется, что мы смотрим вниз. Чтобы подчеркнуть этот эффект, Эшер изобразил два вида одной и той же композиции.

    Третий тип картин с нарушенной логикой пространства — это «невозможные фигуры». Парадокс невозможных фигур основан на том, что наш мозг всегда пытается представить нарисованные на бумаге двухмерные рисунки как трехмерные. Эшер создал много работ, в которых обратился к этой аномалии. Наиболее интересная работа — литография «Водопад» — основана на фигуре невозможного треугольника, придуманного математиком Роджером Пенроузом. В этой работе два невозможных треугольника соединены в единую невозможную фигуру. Создается впечатление, что водопад является замкнутой системой, работающей по типу вечного двигателя, нарушая закон сохранения энергии.

    Самовоспроизведение и информация

    В заключение мы рассмотрим аспекты творчества Эшера, относящиеся к теории информации и искусственному интеллекту. Эта область творчества художника широко освещена во многих статьях и книгах. Наиболее полное исследование этого вопроса освещено в книге Дугласа Хофстадтера (Douglas R.Hofstadter) "Гёдель, Эшер, Бах:Бесконечная золотая нить" (Godel, Escher, Bach:AnEternalGoldenBraid), выпущенной в 1980 году и награжденной пулитцеровской премией.

    Центральная идея самовоспроизведения, взятая на вооружение Эшером, обращается к загадке человеческого сознания и способности человеческого мозга обрабатывать информацию так, как не сможет обработать ни один компьютер. Литографии "Рисующие руки" и "Рыбы и чешуйки" используют эту идею разными способами. Самовоспроизведение является направленным действием. Руки рисуют друг друга, создавая самих себя. При этом сами руки и процесс их самовоспроизведения неразделимы. В работе "Рыбы и чешуйки" концепция самовоспроизведения представлена более функционально, и в данном случае она может быть названа самоподобием. В этом смысле данная работа описывает не только рыб, а все живые организмы, в том числе и человека. Конечно, мы не состоит из уменьшенных копий самих себя, но каждая клетка нашего тела несет в себе информацию обо всем теле в виде ДНК.

    Углубляясь в изучение самовоспроизведения, можно его обнаружить в отражении и пересечении отражений реального мира. Такое пересечение встречается во многих картинах Эшера. Мы рассмотрим лишь один пример - литографию "Три сферы", на которой присутствуют три шаровидных тела, сделанных из разных материалов с различной отражающей способностью. Эти сферы отражают друг друга и художника, и комнату, в которой он работает, и лист бумаги, на котором он рисует сферы. Хофстадтер в своей книге написал "... каждая частица мира содержит в себе весь мир и содержится к во всех других частицах мира...".

    Таким образом, мы заканчиваем тем же, с чего начали, - автопортретом художника - его отражением в своей работе.

    Спирали

    Странно, но в оригинальной работе обошли вниманием целый класс фигур, которые достаточно часто встречаются в работах Эшера. Это закрученные в спирали фигуры. В работе "Спирали" мы видим четыре закручивающиеся в спираль полоски, которые постоянно сближаются и постепенно закручиваются сами в себя, образуя своеобразный тор. Пройдя целый круг, спираль заходит внутрь самой себя, образуя тем самым, как бы, спираль второго порядка - спираль в спирали.

    В работе "Водовороты" Эшер объединил спиралевидную форму и свой излюбленный художественный прием - регулярное разбиение плоскости (или мозаику). Здесь рыбы,выплыв из одного водоворота, попадают во второй и, погружась в него, постепенно уменьшаются в размерах и наконец совсем исчезают. Обратите внимание на постепенно уменьшающуюся в размерах мозаику. Если мысленно развернуть спираль, то мы увидим лишь два ряда рыб, плывущих навстречу друг другу. Но скрученные в спираль и соответствующим образом деформированные образы рыб полностью покрывают некоторую область бесконечной плоскости.

    Иной способ представления спирали использован в работе "Сферические спирали", где четыре полосы расположены на поверхности шара, проходя от одного полюса шара к другому. Похожий путь может пройти самолет, летящий с северного полюса земного шара на южный.

    Здесь мы привели основные виды спиралей, использованных Эшером в своих работах. Различные их модификации можно обнаружить и на многих других литографиях художника.

    Использование Эшером различных математических фигур и законов не ограничивается лишь вышеприведенными примерами. Внимательно изучая его картины, можно обнаружить и другие, не упомянутые в данной работе, геометрические тела или визуальную интерпретацию математических законов.

    Закончить хотелось бы картиной "Узлы", изображающей замкнутые фигуры, которые нельзя отнести к какому-либо разделу данной статьи.
    1   2   3


    написать администратору сайта