Главная страница

Документ Microsoft Word (3). Организации


Скачать 37.84 Kb.
НазваниеОрганизации
Дата16.11.2018
Размер37.84 Kb.
Формат файлаdocx
Имя файлаДокумент Microsoft Word (3).docx
ТипДокументы
#56616

[Введите название организации]

Классификация инструментальных материалов для токарной обработки

[Введите подзаголовок документа]












Невозможно создать такой универсальный инструментальный материал, который был бы одинаково пригоден для всего многообразия условий механической обработки. Поэтому в промышленности используется широкая номенклатура инструментальных материалов.



Все инструментальные материалы подразделяются на следующие группы, ранжированные по степени повышения их режущих свойств:

1. Углеродистые и низколегированные инструментальные стали

2. Быстрорежущие стали

3. Твердые сплавы (металлокерамика) без покрытия и с покрытием

4. Минералокерамика и керметы;

5. Синтетические композиции из нитрида бора;

6. Синтетические и природные алмазы.

Инструментальный материал

Теплостойкость, °С

Предел прочности при изгибе σВ, МПа










Углеродистые стали

200…250

1900…2000

Низколегированные инструментальные стали

250…300

2000…2500

Быстрорежущие стали

600…650

2050…3400

Твердые сплавы

800…900

900…2000

Минералокерамика

1100…1200

325…700

Алмазы

700…800

210…400

Композиты КНБ

1300…1500

400…1500

Сравнительные характеристики физико-механических свойств инструментальных материалов даны ниже:

Следует отметить, что по применяемости в режущих лезвийных инструментах инструментальные материалы располагаются примерно следующим образом:

· 60…70 % приходится на быстрорежущие стали

· 20…30 % - на твердые сплавы

· 5…10 % - на остальные материалы.

ОСТАЛЬНЫЕ МАТЕРИАЛЫ

Также для токарной обработки могут быть использованы следующие материалы: углеродистые стали, низколегированные инструментальные стали, минералокерамика, алмазы, композиты КНБ. Вплоть до первого десятилетия XX века единственным инструментальным материалом, пригодным для изготовления металлорежущих инструментов, была углеродистая инструментальная сталь. Из-за низкой температуро- и износостойкости изготовленными из нее инструментами можно было обрабатывать углеродистые стали и чугуны с низкими скоростями резания (10…20 м/мин, в некоторых случаях до 30 м/мин) и невысоким эксплуатационным ресурсом.

Основным химическим элементом, определяющим физико-механические свойства углеродистых и низколегированных инструментальных сталей, является углерод. Углерод образует карбиды железа, которые в процессе термообработки активно участвуют в фазовых превращениях и образовании твердой мартенситной структуры.

Из группы углеродистых инструментальных сталей в инструментальном производстве наиболее широкое применение имеют стали марок У10А и У12А, содержащие 1,0…1,2 % углерода. Входящие в маркировку буквы обозначают: У – углеродистая инструментальная сталь, А – высшее качество выплавки (высококачественная).

Низколегированные стали, к которым относятся стали марок В2, Ф, 9ХС и ХВГ, по содержанию углерода соответствуют углеродистым инструментальным сталям, но дополнительно легированы небольшим количеством вольфрама, ванадия и других элементов. Незначительное количество в сталях обеих подгрупп хрома, марганца и кремния мало сказывается на эксплуатационных свойствах этих сталей. Эти компоненты входят в их состав для улучшения технологических свойств (литейных, закалочных и т.п.).

В связи с низкой температуростойкостью практическое использование углеродистых и низколегированных инструментальных сталей для изготовления из них режущих инструментов весьма ограничено. Из углеродистых инструментальных сталей изготавливают напильники, надфили и ножовочные полотна. Из углеродистых и низколегированных сталей изготавливают такие режущие инструменты, которые работают только с малыми скоростями резания – мелкоразмерные сверла, зенкеры, развертки, метчики и круглые плашки.

БЫСТРОРЕЖУЩИЕ СТАЛИ

В начале XX века была разработана первая высоколегированная инструментальная сталь. Эта сталь в качестве легирующих присадок содержала 18 % вольфрама, 4,5 % хрома и 1 % ванадия. По сравнению с углеродистой новая сталь имела значительно более высокие физико-механические свойства, в особенности температуро- и износостойкость. Металлорежущие инструменты изготовленные из этой стали могли обрабатывать стали и чугуны со скоростями резания 30…60 м/мин (в 2…2,5 раза выше, чем инструментами из углеродистых сталей). Благодаря этим качествам вновь разработанная сталь получила название быстрорежущей стали. По химическому составу она соответствует современной марке Р18.

Сейчас быстрорежущие стали представляют собой группу инструментальных сталей с повышенным содержанием вольфрама, молибдена и хрома. Кроме того, в ряде марок сталей, отличающихся повышенной теплостойкостью, дополнительно вводится определенное количество ванадия и кобальта.

В России принято буквенно-цифровое обозначение, отражающее примерное процентное содержание основных легирующих элементов. Например, P12Ф2К8М3 означает: Р – сталь быстрорежущая; буквы Ф, К, М означают, соответственно, ванадий, кобальт, молибден; цифра, стоящая после буквы Р, означает примерное содержание вольфрама, остальные цифры означают содержание соответствующих легирующих элементов.

Такой материал, как быстрорежущие стали, отличается уникальными свойствами, что дает возможность использовать его для изготовления инструментов, обладающих повышенной прочностью. Характеристики сталей, относящихся к категории быстрорежущих, позволяют производить из них инструменты самого различного назначения.

К наиболее примечательным свойствам, которыми отличаются быстрорежущие стали различных марок, нужно отнести следующие.

Твердость, сохраняемая в горячем состоянии (горячая твердость). Как известно, любой инструмент, используемый для выполнения обработки резанием, в процессе такой обработки интенсивно нагревается. В результате нагрева обычные инструментальные стали подвергаются отпуску, что в итоге приводит к снижению твердости инструмента. Такого не происходит, если для изготовления была использована быстрорежущая сталь, которая способна сохранять свою твердость даже при нагреве инструмента до 6000. Что характерно, стали быстрорежущих марок, которые часто называют быстрорезы, обладают даже меньшей твердостью по сравнению с обычными углеродистыми, если температура резания находится в нормальных пределах: до 2000.

Повышенная красностойкость. Данный параметр любого металла характеризует период времени, в течение которого инструмент, изготовленный из него, способен выдерживать высокую температуру, не теряя своих первоначальных характеристик. Быстрорежущие стали в качестве материала для изготовления режущего инструмента не имеют себе равных по данному параметру.

Сопротивление разрушению. Режущий инструмент, кроме способности переносить воздействие повышенных температур, должен отличаться и улучшенными механическими характеристиками, что в полной мере демонстрируют стали быстрорежущих марок. Инструмент, изготовленный из таких сталей, обладающий высокой прочностью, может успешно работать на большой глубине резания (сверла) и на высоких скоростях подач (резцы, сверла и др.).

Для улучшения свойств быстрорежущей стали можно прибегнуть к следующим способам:

Чтобы инструменты, изготовленные из быстрорежущих сплавов, обладали высокой твердостью, износостойкостью и коррозионной устойчивостью, их поверхность необходимо подвергнуть обработке, к методам выполнения которой относятся следующие.

Насыщение поверхностного слоя изделия азотом — азотирование. Проводиться такая обработка может в газовой среде, состоящей из азота (80%) и аммиака (20%), либо полностью в аммиачной среде. Время выполнения подобной технологической операции — 10–40 минут, температура, при которой она осуществляется — 550–6600. Использование газовой среды, содержащей азот и аммиак, позволяет сформировать менее хрупкий поверхностный слой.

Насыщение поверхностного слоя изделия цинком — цианирование, которое может осуществляться в газовой или жидкой среде, насыщенной цинком. Выполняется такая операция при температуре 5600 и продолжается от 5 до 30 минут.

Сульфидирование, которое выполняется в жидких расплавах сульфидов, куда добавляются соединения серы. Проводится такая процедура на протяжении 45–180 минут, при этом температура расплава должна составлять 450–5600.
ТВЕДРЫЕ СПЛАВЫ

Основным практически полезными свойствами сплавов данной категории являются высокая твердость, износостойкость и прочность. В некоторых случаях важную роль играет жаропрочность и жаростойкость, а также тугоплавкость. 

Свойства сплавов изменяются в зависимости от группы, к которой относится тот или иной твердый сплав. Для сплавов ВК большую роль играет размер зерна карбида вольфрама. С уменьшением размера зерна возрастает твердость, но уменьшается прочность при изгибе и вязкость сплава (при одинаковом процентном соотношении карбида вольфрама и кобальта) и наоборот соответственно. Сплавы группы ТК, легированные карбидом титана, обладают лучшей стойкостью против окисления, более высокой твердостью и жаропрочностью по сравнению с группой ВК. Однако, имеют более низкую вязкость, прочность при изгибе, а также тепло- и электропроводность. Одновременное добавление карбидов тантала и титана (группа ТТК) увеличивает прочность сплавов при изгибе по сравнению с группой ТК. 

Технологические свойства сплава, а именно, его высокая пластичность позволяют без проблем обрабатывать модель давлением, как в горячем, так и в холодном состоянии. Также обладает хорошей свариваемостью. А вот механическую обработку необходимо осуществлять с низкой скоростью резания и подачей вследствие быстрого нагартовывания материала.

Список литературы:
https://studopedia.ru/4_17307_klassifikatsiya-instrumentalnih-materialov.html
http://met-all.org/stal/bystrorezhushhaya-stal-instrumentalnaya-marki-harakteristiki-markirovka-bystrorez.html
http://www.metotech.ru/tvsplavy-opisanie.htm
https://infopedia.su/4x9784.html


написать администратору сайта