Главная страница
Навигация по странице:

  • Верхний

  • Средний

  • функциями к p ови

  • плазмы

  • Организм как открытая саморегулирующаяся система. Единство организма и внешней среды. Гомеостаз


    Скачать 2.85 Mb.
    НазваниеОрганизм как открытая саморегулирующаяся система. Единство организма и внешней среды. Гомеостаз
    АнкорNORMFIZ_-_ekzamen.docx
    Дата03.11.2017
    Размер2.85 Mb.
    Формат файлаdocx
    Имя файлаNORMFIZ_-_ekzamen.docx
    ТипДокументы
    #10101
    страница14 из 50
    1   ...   10   11   12   13   14   15   16   17   ...   50

    Темновая адаптация происходит при переходе от больших яркостей к малым. Если глаз первоначально имел дело с большими яркостями, то работали колбочки, палочки же были ослеплены, родопсин выцвел, черный пигмент проник в сетчатку, заслоняя колбочки от света. Если внезапно яркость видимых поверхностей значительно уменьшится, то вначале раскроется шире отверстие зрачка, пропуская в глаз больший световой поток. Затем из сетчатки начнет уходить черный пигмент, родопсин будет восстанавливаться, и только когда его наберется достаточно, начнут функционировать палочки.

    Так как колбочки совсем не чувствительны к очень слабым яркостям, то сначала глаз не будет ничего различать, и только постепенно приходит в действие новый механизм зрения. Лишь через 50-60 мин пребывания в темноте чувствительность глаза достигает максимального значения.

    Световая адаптация – это процесс приспособления глаза при переходе от малых яркостей к большим. При этом происходит обратная серия явлений: раздражение палочек благодаря быстрому разложению родопсина чрезвычайно сильно, они «ослеплены», и даже колбочки, не защищенные еще зернами черного пигмента, раздражены слишком сильно. Только по истечении достаточного времени приспособление глаза к новым условиям заканчивается, прекращается неприятное чувство ослепления и глаз приобретает полное развитие всех зрительных функций. Световая адаптация продолжается 8-10 мин.

    Итак, адаптация обеспечивается тремя явлениями:

    • изменением диаметра отверстия зрачка;

    • перемещением черного пигмента в слоях сетчатки;

    • различной реакцией палочек и колбочек.

    Зрачок может изменяться в диаметре от 2 до 8 мм, при этом его площадь и, соответственно, световой поток изменяются в 16 раз. Сокращение зрачка происходит за 5 сек, а его полное расширение – за 5 мин.

    Бинокулярное зрение (зрение двумя глазами) играет важную роль в восприятии разноудаленных предметов и определении расстояния до них, дает более выраженное ощущение глубины пространства по сравнению с монокулярным зрением, т.е. зрением одним глазом. При рассматривании предмета двумя глазами его изображение может попадать на симметричные (идентичные) точки сетчаток обоих глаз, возбуждения от которых объединяются в корковом конце анализатора в единое целое, давая при этом одно изображение. Если изображение предмета попадает на неидентичные (диспаратные) участки сетчатки, то возникает раздвоение изображения. Процесс зрительного анализа пространства зависит не только от наличия бинокулярного зрения, существенную роль в этом играют условно-рефлекторные взаимодействия, складывающиеся между зрительным и двигательным анализаторами. Определенное значение имеют конвергенционные движения глаз и процесс аккомодации, которые управляются по принципу обратных связей.

    Восприятие пространства в целом связано с определением пространственных отношений видимых предметов - их величины, формы, отношения друг к другу, что обеспечивается взаимодействием различных отделов анализатора; значительную роль при этом играет приобретенный опыт.

    1. Рецепторный отдел слухового анализатора. Механизм восприятия звуковых колебаний. Различение высоты тона и силы звука.

    СЛУХ является результатом субъективного восприятия механической энергии колебаний воздуха. Его обеспечивает СЛУХОВОЙ АНАЛИЗАТОР.

    ОРГАН СЛУХА включает в себя:

    • звукоулавливающий;

    • звукопроводящий;

    • рецепторный аппарат.

    Он состоит из 3 частей:

    • наружного уха;

    • среднего уха;

    • внутреннего уха.

    НАРУЖНОЕ УХО включает в себя:

    • ушную раковину, которая выполняет функцию звукоулавливателя;

    • наружный слуховой проход, который обеспечивает проведение звуковых колебаний к барабанной перепонке и выполняет роль резонатора с собственной частотой колебаний 3000 Гц;

    • барабанную перепонку, которая представляет собой мало податливую и слабо растяжимую мембрану, связанную со средним ухом через рукоятку молоточка.

    СРЕДНЕЕ УХОвключает в себя цепь, соединённых между собой косточек: молоточек, наковальню и стремечко (связано через свое основание с овальным окном, а через него с внутренним ухом).

    • Содержит специальный МЕХАНИЗМ, предохраняющий внутреннее ухо от повреждений при чрезмерных воздействиях.

    ВНУТРЕННЕЕ УХО содержит рецепторный аппарат слухового анализатора (улитка с кортиевым органом).

    Улитка - костная структура в виде спирали длиной около 35 мм, что составляет 2,5 завитка.

    Улитка разделена двумя мембранами (вестибулярной и основной) на три канала:

    • верхний (вестибулярная лестница),

    • средний (улиточный ход);

    • нижний (тимпаническая лестница).

    Верхний и нижний каналы связаны с помощью ГЕЛИКОТРЕМЫ у верхушки улитки и заканчиваются круглым окном.

    • Они заполнены перилимфой, которая по химическому составу приближается к плазме крови и церебральной жидкости (преобладает содержание натрия).

    Средний канал заполнен эндолимфой, которая по химическому составу приближается к внутриклеточной жидкости (высокое содержание калия).

    Средний канал содержит (на основной мембране) рецепторный аппарат – КОРТИЕВ ОРГАН, который образован механорецепторами (содержат 4 ряда ВОЛОСКОВЫХ клеток).

    Они прикрыты ТЕКТОРИАЛЬНОЙ (покровной) мембраной, которая имеет свободный край и при передаче звука сгибает волоски рецепторных клеток. Это преобразует акустические сигналы в потенциалы нервной системы.

    Преобразование звуковых сигналов в электрические:

    • Механическая (звуковая) волна, воздействуя на систему слуховых косточек среднего уха, вызывает колебательное движение мембраны овального окна.

    • Волнообразное перемещение перилимфы верхнего и нижнего каналов приводит к смещению базальной мембраны.

    • Возникающий наклон волосков вызывает физико-химические изменения в микроструктурах рецепторных клеток.

    • Следствием является возбуждение волокон слухового нерва.

    Ухо человека может-воспринимать звук при колебании воздуха в диапазоне от 16 до 20 000 Гц. Высказывают предположение, что есть два механизма различения тонов. Звуковая волна, создаваемая колебанием молекул воздуха, распространяется в виде продольной волны давления. Передаваясь на перилимфе и эндолимфе, она между пунктами возникновения и затухания имеет участок с максимальной амплитудой колебаний.
    Место расположения этого участка зависит от частоты колебаний: при высоких частотах она лежит ближе к овальной мембраны, а при низких - ближе к геликотремы. Вследствие этого амплитудный максимум для каждой частоты проявляется в специфической точке эндолимфатического канала. Расположенные здесь сенсорные клетки возбуждаются сильнее. В этом заключается так называемая пространственная теория кодирования высоты тона, который воспринимается в самом рецепторе.


    Кроме того, считают, что при небольшой частоте колебаний (до 1000 Гц) может действовать телефонная принцип кодирования: потенциал действия в кохлеарном нерве возникает с частотой, которая является резонансным до частоты звуковых колебаний. В рецепторах только начинается различение звуковой информации. Обработка завершается в нервных центрах.


    1. Проводниковый и корковый отделы слухового анализатора. Центральные механизмы обработки звуковой информации.

    Проведение возбуждения в нервные центры:

    Осуществляется через Спиральный ганглий улитки, где расположены нейроны первого порядка.

    Его отростки образуют Слуховой или кохлеарный нерв, который направляется в Кохлеарные ядра продолговатого мозга, где расположены нейроны второго порядка.

    По их отросткам возбуждение направляется к Верхней оливе, где происходит первый перекрёст слуховых путей.

    Далее возбуждение поступает в Задние бугры четверохолмия (второй перекрёст слуховых путей), к Внутренним коленчатым телам и Слуховой коре, которая расположена в верхней части височной доли и где происходит третий перекрёст слуховых путей.

    ОТДЕЛЬНЫЕ ЧАСТИ СЛУХОВОЙ ПРОВОДЯЩЕЙ СИСТЕМЫ обеспечивают определённые ФУНКЦИИ

    • СЛУХОВОЙ НЕРВ – восприятие звуков на высоких и низких частотах

    • НИЖНИЕ БУГРЫ ЧЕТВЕРОХОЛМИЯ – воспроизведение ориентировочного рефлекса на звуковые раздражители (поворот головы на звук).

    • СЛУХОВАЯ КОРА – анализ коротких звуковых сигналов, дифференцировку звуков, фиксацию начала звука, различение длительности звука, пространственную локализацию звука, комплексное представление о звуковом сигнале, поступающем в оба уха одновременно.

    Кохлеарный нерв достигает вентрального и дорсального кохлеарных ядер. Волокна от вентрального ядра направляются как к ипси-, так и в контралатеральный оливарних комплексов. Дорсальный кохлеарный тракт переходит на противоположную сторону и заканчивается в ядре латеральной петли. Нейроны, которые поднимаются из масел, также отдают коллатерали ядрам латеральной петли. Далее волокна идут в нижних холмиков чотиригорбкового тела и медиального коленчатого тела. Затем они заходят в ме-
    таталамус, и только после этого звуковые пути попадают в первичной звуковой зоны коры. Рядом с ней находятся нейроны, которые относятся к вторичной звуковой зоны коры большого мозга.


    Информация, содержащаяся в звуковом стимуле, проходя через названные ядра переключения, много раз (как правило, не менее 5-6 раз) переписывается в виде нейронного возбуждения. При этом на каждом этапе она анализируется, причем нередко с подключением сенсорных сигналов других («неслухових») отделов ЦНС.
    Вследствие этого могут возникнуть рефлекторные ответы, характерные для определенного отдела ЦНС. Но только в коре большого мозга появляется ощущение определенного звука.


    Нейроны вентрального ядра еще воспринимают чистые тона, т.е. возбуждения в них возникает при воздействии строго определенных тонов. В дорсальном же ядре лишь незначительная часть нейронов возбуждается чистыми тонами. Другие нейроны реагируют на сложный стимул, например, на изменение частоты, снижение звука и т.д.. На высших уровнях в отдельных нейронах постепенно усиливается специфичность реагирования на сложные звуковые модуляции. Так, одни нейроны возбуждаются только при изменении амплитуды звука, другие - изменении частоты, третьи - при варьировании расстояния от источника, его перемещении.


    Таким образом, каждый раз при действии реально существующих в природе сложных звуков в нервных центрах возникает своеобразная мозаика возбуждения нейронов. Происходит запоминание этой мозаичной карты, обусловленной поступлением соответствующего звука. Люди могут оценивать различные свойства звука только при соответствующей тренировке. Корковые нейроны активизируются по-разному: одни - контралатеральный ухом, другие - ипсилатерально стимулами, третьи - только при одновременной стимуляции обоих ушей. Возбуждаются они, как правило, целыми звуковыми группами. Повреждение этих отделов ЦНС ухудшает восприятие речи, пространственную локализацию источника звука.


    1. Вестибулярный анализатор: рецепторный, проводниковый и корковый отделы.

    ВНУТРЕННЕЕ УХО содержит рецепторный аппарат вестибулярного анализатора (преддверие и полукружные каналы).

    Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возникающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускулатуры. Среди вестибулярных реакций на первом месте находятся статистические и статокинетические реакции, обеспечивающие сохранение равновесия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц.

    Рецепторы статолитовых органов и полукружных каналов:

    Вестибулярный орган состоит из статолитового аппарата и трех полукружных каналов, расположенных во внутреннем ухе в трех взаимно перпендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, находящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферентными волокнами нейронов вестибулярного ганглия, расположенного в височной кости.

    Вестибулярные ганглии и ядра:

    От вестибулярных ганглиев волокна вестибулярного нерва направляются в продолговатый мозг. Импульсы, приходящие по этим волокнам, поступают к нейронам бульбарного вестибулярного комплекса: предверное верхнее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней центральной извилине коры большого мозга.

    Функциональные связи между вышеуказанными структурами обеспечивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной деятельности.

    1. Болевая рецепция. Функции боли. Виды боли.

    БОЛЬ является интегративной функцией организма, которая мобилизует организм и его разнообразные функциональные системы на защиту от воздействующих вредящих факторов и включает такие компоненты, как сознание, ощущение, память, мотивации, вегетативные, соматические, поведенческие реакции, эмоции.

    При этом внешние или внутренние повреждающие воздействия изменяют НОРМАЛЬНУЮ ЖИЗНЕДЕЯТЕЛЬНОСТЬ ОРГАНОВ и ТКАНЕЙ организма.

    Возникающее раздражение ноцицепторов вызывает афферентную импульсацию к различным структурам ЦНС, где формируется болевое ощущение.

    Следствием являются эффекторные влияния, направленные на устранение вредоносного фактора, щажение больного органа, компенсаторную мобилизацию защитных сил организма.

    I. Классификация боли по эволюционному механизму

    • ОСТРАЯ («эпикритическая» боль). Она имеет более поздний и совершенный эволюционный механизм, быстро осознается, легко детерминируется и локализуется, к ней быстро развивается адаптация;

    • ТУПАЯ («протопатическая» боль). Имеет более древний и несовершенный эволюционный механизм, осознается медленно, плохо локализуется, сохраняется длительно и не сопровождается развитием адаптации.

    II. Классификация боли по месту возникновения

    • СОМАТИЧЕСКАЯ боль может быть поверхностной (возникает при поражении кожи, она остро проявляется и легко локализуется) и глубокой (возникает при поражении мышц, костей, суставов соединительной ткани);

    • ВИСЦЕРАЛЬНАЯ боль возникает при повреждении внутренних органов (по проявлению она сходна с глубокой болью, плохо локализуется, иррадиирует и сопровождается вегетативными реакциями).

    III. Классификация боли по времени формирования

    • РАННЯЯ боль быстро возникает (латентный период 0,2 с) и быстро исчезает (с прекращением стимуляции), имеет поверхностное происхождение (кожа);

    • ПОЗДНЯЯ боль возникает при высокой интенсивности раздражения с латентным периодом 0,5-1 с, медленно исчезает, имеет проявления глубокой боли.

    IV. Особые формы боли

    • ПРОЕЦИРУЕМАЯ боль – состояние, при котором место, на которое действует повреждающий стимул, не совпадает с тем, где эта боль ощущается. Возникает при чрезмерном раздражении афферентных нервных волокон. Например, при пережатии спинальных нервов в местах их вхождения в спинной мозг (невралгия)

    • ОТРАЖЁННАЯ боль – болевое ощущение, вызываемое повреждающими раздражениями внутренних органов, которое локализуется не только в данном органе, но и в отдалённых поверхностных участках. Её вызывают раздражения рецептивных окончаний. Например, боль, возникающая в сердце, но ощущаемая в плече и в узкой полоске на медиальной поверхности руки

    • ГИПЕРПАТИЯ – гиперчувствительность кожи, которая возникает в результате конвергенции ноцицептивных афферентов от дерматомов и внутренних органов на одни и те же вставочные нейроны при солнечном ожоге, а также при повреждениях кожи нагреванием, охлаждением, рентгеновскими лучами, механической травмой



    1. Рецепторный, проводниковый и корковый отделы болевого анализатора. Компоненты системной болевой реакции организма.

    ОЩУЩЕНИЕ боли является отрицательной биологической потребностью организма, связанной с нарушением целостности защитных покровных оболочек и изменением уровня кислородного дыхания тканей

    БОЛЕВЫЕ рецепторы или НОЦИЦЕПТОРЫ являются высокопороговыми рецепторами. Они представляют свободные окончания немиелинизированных волокон, образующие плексиморфные сплетения в тканях кожи, мышц и некоторых органов

    Ноцицепторы подразделяются на МЕХАНОНОЦИЦЕПТОРЫ и ХЕМОНОЦИЦЕПТОРЫ, которые возбуждаются при воздействии сильных повреждающих раздражителей в результате механического смещения мембраны или действия химических веществ.

    • Механоноцицепторы преимущественно расположены на поверхностных оболочках организма, а

    • Хемоноцицепторы – во внутренних органах, коже, мышцах, соединительной ткани, наружных оболочках артерий

    Механоноцицепторы обеспечивают сохранность защитных оболочек организма, изолирующих внутреннюю среду от внешнего мира, и реагируют на уколы, сжатие, скручивание, давление, сгибание, температуру.

    Хемоноцицепторы обеспечивают контроль тканевого дыхания и реагируют на повреждение тканей, развитие воспаления (нарушение метаболизма, сопровождающееся выделением гистамина, простагландинов, хининов, всех веществ, подавляющих окислительные процессы), а также на прекращение доступа кислорода к тканям (ишемия).

    АФФЕРЕНТНЫЕ НОЦИЦЕПТИВНЫЕ ВОЛОКНА включают:

    • А-дельта волокна (от механоноцицепторов) – толстые, миелиновые, проводят возбуждение со скоростью 4-30 м/с, высокопороговые.

    Их активация формирует первую боль

    • С-волокна (от хемоноцицепторов) – тонкие, безмиелиновые, со скоростью проведения возбуждения 0,5-2 м/с, низкопороговые.

    Их активация формирует вторую боль и тонические сокращения мышц.

    Возбуждение по ним поступает в ЗАДНИЕ РОГА СПИННОГО МОЗГА, средний мозг, Гипоталамус, Таламус, Лимбические структуры переднего мозга, сенсорные и Ассоциативные зоны коры.

    Компоненты системной болевой реакции:

    • ПЕРЦЕПТУАЛЬНЫЙ – собственно ОЩУЩЕНИЕ боли, возникающее на основе возбуждения механо- и хемоноцицепторов.

    • ДВИГАТЕЛЬНЫЙ – рефлекторные защитные двигательные реакции на уровне спинного мозга.

    • ЭМОЦИОНАЛЬНЫЙ – ОТРИЦАТЕЛЬНАЯ эмоция в виде страха или агрессии, формирующаяся на основе возбуждения гипоталамо-лимбико-ретикулярных образований мозга.

    • МОТИВАЦИОННЫЙ – мотивация УСТРАНЕНИЯ болевых ощущений, формирующуюся на основе активации лобных и теменных областей коры мозга и приводящую к формированию поведения, направленному на лечение ран или ликвидацию болевого ощущения.

    • ВЕГЕТАТИВНЫЙ – рефлекторные реакции, направленные на ликвидацию повреждений: ускорение свёртывания крови, возрастание выработки антител, лейкоцитоз, повышение фагоцитарной активности лейкоцитов, реакции, улучшающие окислительные процессы повреждённых тканей (местное расширение кровеносных сосудов, усиление функций сердечно-сосудистой, дыхательной системы, увеличение эритроцитов в периферической крови, изменение активности гормонов, обмена веществ.

    • ПАМЯТЬ – активация механизмов памяти, связанная с извлечением из опыта по устранению болевых ощущений, то есть избегания повреждающего фактора или сведения до минимума его действия, и опыта лечения ран.

    1. Антиноцицептивные системы.

    Механизмы контроля болевой чувствительности:

    • ОПИАТНЫЙ механизм обеспечивается при помощи ОПИАТНЫХ РЕЦЕПТОРОВ, которые располагаются по ходу ноцицептивной проводящей системы и обладают избирательной специфичностью к опиатным пептидам.

    ОПИАТНЫЕ ПЕПТИДЫ – это эндогенные морфиноподобные вещества, которые вырабатываются в гипоталамусе и гипофизе.

    Их представителями являются: ЭНДОРФИНЫ и ЭНКЕФАЛИНЫ.

    Антагонистом является НАЛОКСОН (блокирует опиатные пептиды). При БОЛИ их содержание СНИЖАЕТСЯ. При АНАЛЬГЕЗИИ содержание УВЕЛИЧИВАЕТСЯ.

    Количество опиатных РЕЦЕПТОРОВ и опиатных ПЕПТИДОВ определяет порог БОЛЕВОЙ ЧУВСТВИТЕЛЬНОСТИ (понижение опиатных пептидов вызывает повышение болевой чувствительности – состояние ГИПЕРАЛГЕЗИИ).

    • СЕРОТОНИНЕРГИЧЕСКИЙ механизм является самостоятельным нервным механизмом.

    Серотонин выделяется некоторыми нейронами ствола мозга, которые оказывают нисходящие влияния на пути болевой чувствительности.

    При БОЛИ выделение серотонина УМЕНЬШАЕТСЯ. При АНАЛЬГЕЗИИ его содержание УВЕЛИЧИВАЕТСЯ. УМЕНЬШЕНИЕ выделения серотонина ПОВЫШАЕТ болевую чувствительность.

    • КАТЕХОЛАМИННЫЙ механизм является самостоятельным эндогенным механизмом, который реализуется через эмоциогенные зоны гипоталамуса (позитивные и негативные) и ретикулярной формации ствола мозга.

    Прямые проекции от гипоталамуса к нейронам заднего рога спинного мозга имеют катехоламиновую природу.

    Катехоламины в большой концентрации УГНЕТАЮТ ноцицептивную импульсацию.

    При отсутствии болевого раздражителя НОЦИЦЕПТИВНАЯ И АНТИНОЦИЦЕПТИВНАЯ СИСТЕМЫ находятся в равновесии. НОЦИЦЕПТИВНАЯ СИСТЕМА формирует болевое ощущение.

    АНТИНОЦИЦЕПТИВНАЯ СИСТЕМА подавляет болевое ощущение, тормозит активность ноцицептивной системы и определяет ПОРОГИ возбудимости НОЦИЦЕПТОРОВ.

    К НОЦИЦЕПТИВНЫМ СТРУКТУРАМ относятся задние рога спинного мозга, таламус.

    Они продуцируют НОЦИЦЕПТИВНЫЕ ВЕЩЕСТВА: вещество «Р», брадикинин, гистамин, соматостатин.

    К АНТИНОЦИЦЕПТИВНЫМ СТРУКТУРАМ относятся: центральное серое околоводопроводное вещество, ядра шва, дорсомедиальный гипоталамус.

    Там выделяются АНТИНОЦИЦЕПТИВНЫЕ ВЕЩЕСТВА: катехоламины, эндорфины, энкефалины, серотонин, ацетилхолин, окситоцин, глицин, нейротензин.

    НОЦИЦЕПТИВНЫЙ РАЗДРАЖИТЕЛЬ вызывает торможение АНТИНОЦИЦЕПТИВНОЙ СИСТЕМЫ и активацию НОЦИЦЕПТИВНОЙ СИСТЕМЫ. Следствием является БОЛЕВОЕ ОЩУЩЕНИЕ.

    1. Физиологические основы обезболивания.

    Принципиально выделяется два пути обезболивания: снижение активности ноцицептивной системы и повышение активности антиноцицептивной системы. Это достигается при помощи:

    • физических мер – иммобилизация, согревание или охлаждение, прогревание глубоко лежащих тканей (диатермия), массаж и упражнения для ослабления напряжения, отвлекающая терапия (горчичники);

    • фармакологических мер – использование лекарственных препаратов, действующих на различных уровнях.

    Фармакологические меры

    • Местная анестезия – предотвращение проведения болевых импульсов на периферии (новокаиновая блокада).

    • Блокирование ноцицептивного возбуждения по восходящим путям спинного мозга (люмбальная анестезия).

    • Воздействие на нейроны различных структур головного мозга, отвечающие на ноцицептивные раздражения (наркоз);

    Нейрохирургические меры – хирургическое прекращение поступления ноцицептивных сигналов (хордотомия). Из-за необратимости этих мер применяют только при хронических болях, доставляющих мучения человеку;

    Психогенная регуляция болевых ощущений предусматривает корковую регуляцию болевой чувствительности и изменение эмоционального состояния. Так, предупреждение человека о воздействии болевого раздражителя, гипноз и внушение снижают болевую чувствительность. Положительные эмоции оказывают антиноцицептивное влияние.

    К нетрадиционным методам обезболивания относятся:

    • иглоукалывание (акупунктура);

    • электростимуляция кожных нервов, сенсорных путей спинного мозга. В основе лежит стимуляция антиноцицептивной системы.

    1. Функции крови. Состав крови.

    Система кpови пpедставляет собой упоpядоченную взаимосвязь элементов, обладающих собственной оpганизацией, стpуктуpой и pегуляцией.

    Система крови включает в себя следующие компоненты:

    Кpовь, циpкулиpующая в сосудах (пpедставлена фоpменными элементами и жидкой частью)‏

    Аппаpат кpоветвоpения, котоpый включает оpганы, пpодуциpующие фоpменные элементы (костный мозг, лимфостpуктуpы) и оpганы, пpодуциpующие элементы жидкой части (печень и дp.)‏

    Аппаpат кpовеpазpушения (печень, селезёнка, костный мозг)‏

    Аппаpат депониpования кpови (синусы костного мозга, лимфоузлы, печень, селезёнка, стенки сосудов лёгких и кожи)‏

    Аппаpат pегуляции, включающий нейpо-гоpмонально-гумоpальные механизмы, ответственные за обеспечение оpганизма кpовью, адекватной его потpебностям

    Основными функциями кpови являются :

    1. Тpнаспоpтная (тpанспоpт pазличных веществ в пpеделах оpганизма)‏

    2. Питательная (кpовь пpиносит клеткам питательные вещества)‏

    3. Дыхательная (обеспечивает газообмен О2 и СО2)‏

    4. Регулятоpная (обеспечивает гомеостаз, гумоpальную pегуляцию)‏

    5. Выделительная (доставляет пpодукты pаспада к оpганам выделения)‏

    6. Теpмоpегулятоpная (поддеpжание темпеpатуpы тела за счёт изменения теплоотдачи)‏

    7. Защитная (адсоpбция токсических веществ, фагоцитоз, обpазование антител, иммуннитет, гемостаз)‏

    Кpовь состоит из фоpменных элементов (45 %) и жидкой части или плазмы (55 %)‏

    Фоpменные элементы включают эpитpоциты, лейкоциты, тpомбоциты

    1. Количество крови в организме, его относительное постоянство.

    Общее количество кpови в оpганизме взpослого человека составляет 6-8 % от массы тела (пpи массе 70 кг – это 5-6 л), из котоpой около половины циpкулиpует, а остальная часть находится в депо (в печени – 20 %, в селезёнке – до 16 %, в кожных сосудах – до 10 %)‏

    Гематокрит — это соотношение объёмов плазмы крови и форменных элементов.

    1. Соотношение определяется путём центрифугирования крови в специальном капилляре с делениями — гематокрите.

    2. В нормальных условиях это соотношение составляет 45 % форменных элементов и 55 % плазмы.

    3. Эта величина у здорового человека может претерпевать существенные и достаточно длительные изменения лишь при адаптации к большим высотам.

    1. Плазма крови, ее количество, состав.

    Плазма крови - жидкая часть крови, остающаяся после удаления ее форменных элементов.

    Плазма, лишенная фибриногена, называется сывороткой.

    В состав плазмы входят:

    1) вода (90-92 %)‏

    2) сухой остаток (8-10%)‏

    Сухой остаток состоит из:

    1) оpганических веществ

    2) неоpганических веществ

    К оpганическим веществам крови относятся :

    1. Белки плазмы (общее количество 7-8 %) – альбумины (4,5 %), глобулины (2-3,5 %), фибpиноген (0,2-0,4 %)‏

    2. Hебелковые азотсодеpжащие соединения (аминокислоты, полипептиды, мочевина, мочевая кислота, кpеатин, кpеатинин, аммиак)‏

    Общее количество небелкового азота (остаточный азот) составляет 11-15 ммоль/л (30-40 мг%). Пpи наpушении функции почек, выделяющих шлаки из оpганизма, содеpжание остаточного азота pезко возpастает

    3. Безазотистые оpганические вещества: глюкоза 4,4-6,65 ммоль/л (80-120 мг%), нейтpальные жиpы, липиды

    4. Феpменты и пpофеpменты: некотоpые из них участвуют в пpоцессах свёpтывания кpови и фибpинолиза (пpотpомбин, пpофибpинолизин), некотоpые - pасщепляют гликоген, жиpы, белки и дp.

    Hеоpганические вещества плазмы составляют около 1% от её состава

    К ним относятся пpеимущественно катионы (Na+, Ca2+, K+, Mg2+) и анионы (Cl-, HPO42-, HCO3-)‏

    Из тканей оpганизма в кpовь поступает большое количество пpодуктов обмена, биологически активных веществ (сеpотонин, гистамин), гоpмонов, из кишечника всасываются питательные вещества, витамины

    Однако состав плазмы от этого существенно не изменяется. Постоянство состава плазмы обеспечивают pегулятоpные механизмы, восстанавливающие состав и свойства внутpенней сpеды

    1. Электролитный состав плазмы крови. Осмотическое давление. Осмотическая резистентность эритроцитов. Регуляция постоянства.

    Электролитный состав плазмы важен для поддержания ее осмотического давления, кислотно-щелочного состояния, функций клеточных элементов крови и сосудистой стенки, активности ферментов, процессов свертывания крови и фибринолиза. Поскольку плазма крови постоянно обменивается электролитами с микросредой клеток, содержание в ней электролитов в значительной мере определяет и фундаментальные свойства клеточных элементов органов — возбудимость и сократимость, секреторную активность и проницаемость мембран, биоэнергетические процессы. Содержание основных электролитов в плазме крови, эритроцитах и тканевой микросреде представлено в табл.2.1.

    http://doctor-v.ru/med/wp-content/uploads/capture.png

    Таблица 2.1. Содержание электролитов в плазме крови, эритроцитах и микросреде тканей (ммоль/л) у человека

    Из таблицы видно, что содержание натрия и калия в плазме и эритроцитах отличается также, как и в других клетках и внеклеточной среде (глава 1), и, соответственно, обусловлено различиями проницаемости мембран и работой К- Na- насосов клеток. Часть катионов плазмы связана с анионами органических кислот и белков, что играет роль в поддержании кислотно-щелочного состояния  и  необходимо для  реализации  функций  белков.

    Отличается в плазме и эритроцитах содержание и ряда анионов, прежде всего хлора и бикарбоната. Эти различия обусловлены обменом этих анионов между эритроцитами и плазмой в капиллярах легких и тканей при дыхании.

    Содержание натрия и калия в плазме крови — жесткие гомеостатические константы, зависящие от баланса процессов поступления и выведения ионов, а также их перераспределения между клетками и внеклеточной средой. Регуляция гомеостазиса этих катионов осуществляется изменениями поведения (большее или меньшее потребление соли) и системами гуморальной регуляции (см.главу 3), среди которых основное значение имеют ренин-ангиотензин-альдостероновая система и натриуретический гормон предсердий (см.главу 5). Жесткой гомеостатической константой является и концентрация кальция в плазме крови. Кальций содержится в двух формах: связанной (с белками, в комплексных соединениях, малорастворимых солях) и свободной, ионизированной (Са++). Основные биологические эффекты кальция обусловлены его ионизированной формой. В цитозоле клеток ионизированного кальция содержится мало, но его количество чрезвычайно тонко регулируется, поскольку этот катион является важнейшим регулятором обменных процессов и функций клеток. Поступление кальция в клетки из внеклеточной среды связано с его уровнем в микросреде и плазме крови, хотя в большей степени зависит от специальных транспортных мембранных механизмов (каналов, насосов, переносчиков). В клеточном цитозоле ионизированный кальций связывается с белками, а также удаляется с помощью специальных Са-насосов во внутриклеточные депо (митохондрии, цитоплазматический ретикулум) и наружу в микросреду клеток. Содержащийся в плазме крови ионизированный кальций помимо того, что является источником для транспорта внутрь клеток, необходим для обеспечения физико-химических свойств плазменных белков, активности ферментов, например, для реализации механизмов свертывания крови. Регуляция уровня ионизированного кальция   в   плазме   крови   осуществляется   специальной   гуморальной системой, включающей ряд кальций-регулирующих гормонов: околощитовидных желез (паратирин), щитовидной железы (кальцитонин и  его  аналоги),  почек  (кальцитриол).

    В плазме крови содержится и большое число различных микроэлементов, называемых так из-за очень малых концентраций. Как минимум 15 микроэлементов, содержащихся в плазме крови, например, медь, кобальт, марганец, цинк, хром, стронций и др., играют важную роль в процессах метаболизма клеток и обеспечении их функций, поскольку входят в состав ферментов, катализируют их действие, участвуют в процессах образования клеток крови и гемоглобина (гемопоэзе) и др.

    Осмотическое давление крови равняется 7,6 атм. Зависит от концентрации в плазме крови электролитов неэлекролитов. На долю неорганических электролитов приходится до 96 %. Жидкость или раствор с осмотическим давлением 7,6 атм. называют изотоническим; более 7,6 атм. – гипертоническим, менее 7,6 атм. – гипотоническим.

    Под осмотической резистентностью эритроцитов понимается устойчивость эритроцитов по отношению к гипотоническим растворам натрия хлорида. Изотоническим (т. е. раствором, осмотическое давление которого равно осмотическому давлению в сыворотке крови) является 0,85% раствор натрия хлорида. Растворы его с меньшей концентрацией являются гипотоническими. Различают минимальную и максимальную резистентность эритроцитов:


    • Минимальная резистентность эритроцитов определяется максимальной концентрацией гипотонического раствора натрия хлорида (в серии растворов с постепенно уменьшающейся концентрацией), при которой начинается разрушение наименее устойчивых эритроцитов, находящихся в растворе в течение 3 ч.

    • Максимальная резистентность эритроцитов определяется максимальной концентрацией гипотонического раствора натрия хлорида, вызывающего в течение 3 ч разрушение всех эритроцитов помещенной в этот раствор крови.

    У здоровых людей минимальная резистентность эритроцитов равна 0,45—0,50%, максимальная — 0,35—0,40% раствора натрия хлорида.

    Наименее устойчивы к гипотоническим растворам сфероциты.

    Наиболее выраженное понижение осмотической стойкости эритроцитов наблюдается при врожденной гемолитической анемии. Однако необходимо помнить, что и при приобретенной аутоиммунной гемолитической анемии осмотическая стойкость эритроцитов иногда может быть снижена. Незначительное понижение осмотической стойкости эритроцитов может иногда наблюдаться при полицитемии, туберкулезе, лимфогранулематозе, циррозах печени, лейкозах.

    Повышение осмотической стойкости эритроцитов возможно при механической желтухе (что в сочетании с другими видами обследования помогает при дифференциальной диагностике этого вида желтухи с желтухой при врожденной гемолитической анемии), при талассемии и гемоглобинозах.

    Постоянство осмотического давления крови поддерживается главным образом благодаря деятельности почек, через которые выводится избыток воды и растворимых солей.

    1. Белки плазмы крови, их физиологическая роль. Онкотическое давление, его роль.

    Белки плазмы составляют основную массу органических веществ плазмы крови.

    Белки плазмы крови подразделяются на:

    1) альбумины (60,5 % от общего количества белков)‏

    2) глобулины (35,4 %)‏

    3) фибриноген (4,1 %)‏
    1   ...   10   11   12   13   14   15   16   17   ...   50


    написать администратору сайта