гистология. экзамен ГИСТОЛОГИЯ билеты. Организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов
Скачать 0.56 Mb.
|
Рефлекторная дуга является функциональной единицей нервной системы, они представляют собой цепочки нейронов, которые обеспечивают реакции рабочих органов (органов-мишеней) в ответ на раздражение рецепторов. В рефлекторных дугах нейроны, связанные друг с другом синапсами, образуют три звена: рецепторное (афферентное), эффекторное и расположенное между ними ассоциативное (вставочное), которое в простейшем варианте дуги может отсутствовать. На различные звенья дуги оказывают регуляторные воздействия связанные с ними нейроны вышележащих центров, вследствие чего рефлекторные дуги имеют сложное строение. Рефлекторные дуги в соматическом (анимальном) и автономном (вегетативном) отделах нервной системы обладают рядом особенностей. Рецепторное звено образовано афферентными псевдоуниполярными нейронами, тела которых располагаются в спинальных ганглиях. Ассоциативное звено представлено мультиполярными вставочными нейронами, дендриты и тела которых расположены в задних рогах спинного мозга, а аксоны направляются в передние рога, передавая импульсы на тела и дендриты эффекторных нейронов. Эффекторное звено образовано мультиполярными мотонейронами, тела и дендриты которых лежат в передних рогах, а аксоны выходят из спинного мозга в составе передних корешков, направляются к спинальному ганглию и далее в составе смешанного нерва — к скелетной мышце, на волокнах которой их веточки образуют нервно-мышечные синапсы (моторные, или двигательные, бляшки). Микроциркуляторное русло включает в себя следующие компоненты: артериолы, прекапилляры, капилляры, посткапилляры, венулы, артериоло-венулярные анастомозы. Функции микроциркуляторного русла состоят в следующем: трофическая и дыхательная функции, так как обменная поверхность капилляров и венул составляет 1000 м2, или 1,5 м2 на 100 г ткани; депонирующая функция, так как в сосудах микроциркуляторного русла в состоянии покоя депонируется значительная часть крови, которая во время физической работы включается в кровоток; дренажная функция, так как микроциркуляторное русло собирает кровь из приносящих артерий и распределяет ее по органу; регуляция кровотока в органе, эту функцию выполняют артериолы благодаря наличию в них сфинктеров; транспортная функция, то есть транспорт крови. Артериолы имеют диаметр 50—100 мкм. В их строении сохраняются три оболочки, но они выражены слабее, чем в артериях. В области отхождения от артериолы капилляра находится гладкомышечный сфинктер, который регулирует кровоток. Этот участок называется прекапилляром. Капилляры — это самые мелкие сосуды, они различаются по размерам на: узкий тип 4—7 мкм; обычный или соматический тип 7—11 мкм; синусоидный тип 20—30 мкм; лакунарный тип 50—70 мкм. Для капилляров характерна органная специфичность, в связи с чем выделяют три типа капилляров: капилляры соматического типа или непрерывные, они находятся в коже, мышцах, головном мозге, спинном мозге. Для них характерен непрерывный эндотелий и непрерывная базальная мембрана; капилляры фенестрированного или висцерального типа (локализация — внутренние органы и эндокринные железы). Для них характерно наличие в эндотелии сужений — фенестр и непрерывной базальной мембраны; капилляры прерывистого или синусоидного типа (красный костный мозг, селезенка, печень). В эндотелии этих капилляров имеются истинные отверстия, есть они и в базальной мембране, которая может вообще отсутствовать. Венулы делятся на посткапиллярные, собирательные и мышечные. Посткапиллярные венулы образуются в результате слияния нескольких капилляров, имеют такое же строение, как и капилляр, но больший диаметр (12—30 мкм) и большое количество перицитов. Артериоло-венулярные анастомозы или шунты — это вид сосудов микроциркуляторного русла, по которым кровь из артериол попадает в венулы, минуя капилляры. Это необходимо, например, в коже для терморегуляции. Все артериоло-венулярные анастомозы делятся на два типа: истинные — простые и сложные; атипичные анастомозы или полушунты. БИЛЕТ №42 1.Плазмолемма: структура, химический состав, функции. Межклеточные контакты, их типы. 2. Волокнистые соединительные ткани: общая морфофункциональная характеристика, классификация, источники развития, составные компоненты. Возрастные изменения. Регенерация. З. Легкие. Респираторный отдел легкого: структурно-функциональная единица, ее составные компоненты, строение альвеол. Аэрогематический барьер, особенности кровоснабжения легкого. Плазмолемма оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой. Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков. Функции плазмолеммы: разграничивающая (барьерная); рецепторная или антигенная; транспортная; образование межклеточных контактов. Основу строения плазмолеммы составляет двойной слой липидных молекул - билипидная мембрана, в которую местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой. Каждый монослой ее образован в основном молекулами фосфолипидов и, частично, холестерина. При этом в каждой липидной молекуле различают две части: гидрофильную головку и гидрофобные хвосты. Гидрофобные хвосты липидных молекул связываются друг с другом и образуют билипидный слой. Гидрофильные головки билипидного слоя соприкасаются с внешней или внутренней средой. Билипидная мембрана, а точнее ее глубокий гидрофобный слой, выполняет барьерную функцию, препятствуя проникновению воды и растворенных в ней веществ, а также крупных молекул и частиц. Белковые молекулы встроены в билипидный слой мембраны локально и не образуют сплошного слоя. По локализации в мембране белки подразделяются на: интегральные пронизывают всю толщу билипидного слоя; полуинтегральные включающиеся только в монослой липидов (наружный или внутренний); прилежащие к мембране, но не встроенные в нее. По выполняемой функции белки плазмолеммы подразделяются на: структурные белки; транспортные белки; рецепторные белки; ферментные. Помимо барьерной функции, предохраняющей внутреннюю среду клетки, плазмолемма выполняет транспортные функции, обеспечивающие обмен клетки с окружающей средой. Характеристика рыхлой волокнистой соединительной ткани.Она состоит из клеток и межклеточного вещества, которое в свою очередь состоит из волокон (коллагеновых, эластических, ретикулярных) и аморфного вещества. Морфологические особенности, отличающие рыхлую волокнистую соединительную ткань от других разновидностей соединительных тканей: многообразие клеточных форм (9 клеточных типов); преобладание в межклеточном веществе аморфного вещества над волокнами. Функции рыхлой волокнистой соединительной ткани: трофическая; опорная - образует строму паренхиматозных органов; защитная — неспецифическая и специфическая (участие в иммунных реакциях) защита; депо воды, липидов, витаминов, гормонов; репаративная (пластическая). Функционально ведущими структурными компонентами рыхлой волокнистой соединительной ткани являются клетки различной морфологии и функции, которые и будут рассмотрены в первую очередь, а затем уже межклеточное вещество. I.Фибробласты — преобладающая популяция клеток рыхлой волокнистой соединительной ткани. Они неоднородны по степени зрелости и функциональной специфичности и потому подразделяются на следующие субпопуляции: малодифференцированные клетки; дифференцированные или зрелые клетки, или собственно фибробласты; старые фибробласты (дефинитивные)фиброциты, а также специализированные формы фибробласты; миофибробласты; фиброкласты. II. Макрофаги — клетки, осуществляющие защитную функцию, прежде всего посредством фагоцитоза крупных частиц, откуда и происходит их название. Однако фагоцитоз, хотя и важная, но далеко не единственная функция этих клеток. По современным данным макрофаги являются полифункциональными клетками. Образуются макрофаги из моноцитов крови после их выхода из кровеносного русла. Макрофаги характеризуются структурной и функциональной гетерогенностью в зависимости от степени зрелости, от области локализации, а также от их активации антигенами или лимфоцитами. Прежде всего, они подразделяются на фиксированные и свободные (подвижные). Макрофаги соединительной ткани являются подвижными или блуждающими и называются гистиоцитами. Защитная функция макрофагов проявляется в разных формах: неспецифическая защита — защита посредством фагоцитоза экзогенных и эндогенных частиц и их внутриклеточного переваривания; выделение во внеклеточную среду лизосомальных ферментов и других веществ: пирогена, интерферона, перекиси водорода, синглетного кислорода и другие; специфическая или иммунологическая защита — участие в разнообразных иммунных реакциях. Основные функции легких: газообмен; терморегуляторная функция; участие в регуляции кислотно-щелочного равновесия; регуляция свертывания крови — легкие образуют в больших количествах тромбопластин и гепарин, которые участвуют в деятельности коагулянтно-антигоагулянтной системы крови; регуляция водно-солевого обмена; регуляция эритропоэза путем секреции эритропоэтина; иммунологическая функция; участие в обмене липидов. Легкие состоят из двух основных частей: внутрилегочных бронхов (бронхиальное дерево) и многочисленных ацинусов, формирующих паренхиму легких. Бронхиальное дерево начинается правым и левым главными бронхами, которые делятся на долевые бронхи — 3 справа и 2 слева. Долевые бронхи делятся на внелегочные зональные бронхи, образующие в свою очередь 10 внутрилегочных сегментарных бронхов. Последние последовательно разделяются на субсегментарные, междольковые, внутридольковые бронхи и терминальные бронхи. Существует классификация бронхов по их диаметру. По данному признаку выделяют бронхи крупного (15—20 мм), среднего (2—5 мм), малого (1—2 мм) калибра. Стенка бронха состоит из 4-х оболочек: слизистой, подслизистой, фиброзно-хрящевой и адвентициальной. Эти оболочки на протяжении бронхиального дерева претерпевают изменения. Внутренняя, слизистая оболочка состоит из трех слоев: многорядного мерцательного эпителия, собственной и мышечной пластинок. В состав эпителия входят следующие виды клеток: секреторные клетки, клетки секретируют ферменты разрушающие сурфактант; безреснитчатые клетки, возможно, выполняют рецепторную функцию; каемчатые клетки, основной функцией этих клеток является хеморецепция; реснитчатые; бокаловидные; эндокринные. Собственная пластинка слизистой оболочки состоит из рыхлой волокнистой соединительной ткани, богатой эластическими волокнами. Мышечная пластинка слизистой оболочки образована гладкой мышечной тканью. Подслизистая оболочка представлена рыхлой волокнистой соединительной тканью. В ней лежат концевые отделы смешанных слизисто-белковых желез. Секрет желез увлажняет слизистую оболочку. Фиброзно-хрящевая оболочка образована хрящевой и плотной волокнистой соединительной тканями. Адвентициальная оболочка представлена рыхлой волокнистой соединительной тканью.В крупных бронхах он эпителий многорядный, затем постепенно становится двурядным, а в терминальных бронхиолах превращается в однорядный кубический. Воздухоносные пути заканчиваются терминальными бронхиолами, имеющими диаметр до 0,5 мм. Их стенка образована слизистой оболочкой. Эпителий — однослойный кубический реснитчатый. В его состав входят реснитчатые, щеточные, бескаемчатые клетки и секреторные клетки Клара. Собственная пластинка образована рыхлой волокнистой соединительной тканью, которая переходит в междольковую рыхлую волокнистую соединительную ткань легкого. БИЛЕТ № 43 1. Провизорные органы зародыша человека: источники и хронология развития, строение, функциональная роль. 2.Костные ткани: классификация, строение, функциональная роль. Остеогенез: типы, этапы. Влияние экологических и социальных факторов на структурно - функциональное состояние костных тканей. 3.Сердечнососудистая система: составные компоненты, функциональная роль различных звеньев. Классификация и общий принцип строения сосудов. Развитие сосудов. Функции провизорных органов: хорион выполняет защитную, трофическую, эндокринную, экскреторную функции; желточный мешок участвует в образовании первичных кровеносных сосудов и первичных половых клеток; амнион — выработка околоплодных вод, защита плода от механических повреждений, поддержание определенной концентрации солей в околоплодных водах; по аллантоису прорастают первичные кровеносные сосуды из зародыша к хориону, формируя плацентарный круг кровообращения. Хорион возникает из трофобласта, который уже разделился на цитотрофобласт и синцитиотрофобласт. Последний под влиянием контакта со слизистой матки разрастается и разрушает ее. К концу 2-й недели образуются первичные ворсинки хориона в виде скопления эпителиальных клеток цитотрофобласта. В начале 3-й недели в них врастает мезодермальная мезенхима и возникают вторичные ворсинки, а когда к концу 3-й недели внутри соединительнотканной сердцевины появляются кровеносные сосуды, их называют третичными ворсинками. Амнион возникает путем расхождения клеток эпибласта внутренней клеточной массы. Амниотическая полость некоторое время ограничена клетками эпибласта и частично участком трофобласта. Затем боковые стенки эпибласта образуют складки, направленные вверх, которые впоследствии срастаются. Полость оказывается полностью выстланной эпибластическими (эктодермальными) клетками. Желточный мешок, появляется, когда от внутренней клеточной массы отделяется тонкий слой гипобласта и его внезародышевые энтодермальные клетки, перемещаясь, выстилают изнутри поверхность трофобласта. Образовавшийся первичный желточный мешок на 12—13-е сутки спадается и преобразуется во вторичный желточный мешок, связанный с зародышем. Энтодермальные клетки обрастают снаружи внезародышевой мезодермой. Аллантоис возникает у зародыша человека, в виде кармана вентральной стенки задней кишки, но его энтодермальная полость остается рудиментарной структурой. Тем не менее, в его стенках развивается обильная сеть сосудов, соединяющаяся с главными кровеносными сосудами зародыша. Мезодерма аллантоиса соединяется с мезодермой хориона, отдавая в него кровеносные сосуды. Костная ткань является разновидностью соединительной ткани и состоит из клеток и межклеточного вещества, в котором содержится большое количество минеральных солей, главным образом фосфат кальция. Минеральные вещества составляют 70 % от костной ткани, органические — 30 %. Функции костных тканей: опорная; механическая; защитная; участие в минеральном обмене организма - депо кальция и фосфора. Клетки костной ткани: остеобласты, остеоциты, остеокласты. Основными клетками в сформированной костной ткани являются остеоциты. Это клетки отростчатой формы с крупным ядром и слабовыраженной цитоплазмой (клетки ядерного типа). Остеобласты содержатся только в развивающейся костной ткани. В сформированной костной ткани они отсутствуют, но содержатся обычно в неактивной форме в надкостнице. Отеокласты — костеразрушающие клетки, в сформированной костной ткани отсутствуют. Но содержатся в надкостнице и в местах разрушения и перестройки костной ткани. Поскольку в онтогенезе непрерывно осуществляются локальные процессы перестройки костной ткани, то в этих местах обязательно присутствуют и остеокласты. В процессе эмбрионального остеогистогенеза эти клетки играют важную роль и определяются в большом количестве. Остеокласты имеют характерную морфологию: во-первых, эти клетки являются многоядерными (3—5 и более ядер), во-вторых, это довольно крупные клетки (диаметром около 90 мкм), в-третьих, они имеют характерную форму — клетка имеет овальную форму, но часть ее, прилежащая к костной ткани, является плоской. Межклеточное вещество костной ткани состоит из основного вещества и волокон, в которых содержатся соли кальция. Волокна состоят из коллагена I типа и складываются в пучки, которые могут располагаться параллельно (упорядочено) или неупорядочено, на основании чего и строится гистологическая классификация костных тканей. Различают две разновидности костных тканей: в ретикулофиброзной костной ткани пучки коллагеновых волокон толстые, извилистые и располагаются неупорядочено. В минерализованном межклеточном веществе в лакунах беспорядочно располагаются остеоциты. Пластинчатая костная ткань состоит из костных пластинок, в которых коллагеновые волокна или их пучки располагаются параллельно в каждой пластинке, но под прямым углом к ходу волокон в соседних пластинках. Между пластинками в лакунах располагаются остеоциты, тогда как их отростки проходят в канальцах через пластинки. |