Главная страница
Навигация по странице:

  • Гиалиновая хрящевая ткань

  • Эластическая хрящевая ткань

  • Волокнистая хрящевая ткань

  • гистология. экзамен ГИСТОЛОГИЯ билеты. Организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов


    Скачать 0.56 Mb.
    НазваниеОрганизм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов
    Анкоргистология
    Дата25.01.2022
    Размер0.56 Mb.
    Формат файлаdocx
    Имя файлаэкзамен ГИСТОЛОГИЯ билеты.docx
    ТипДокументы
    #341794
    страница1 из 18
      1   2   3   4   5   6   7   8   9   ...   18

    БИЛЕТ №1

    1. Этапы развития гистологии, цитологии, эмбриологии. Современный этап развития гистологии. Методы качественного и количественного анализа.

    2. Скелетные соединительные ткани, их структурно-функциональные особенности.

    Хрящевые ткани: классификация, особенности строения, развития, топография.

    3. Органы чувств: определение, понятие о сенсорных системах (анализаторах), их составные части. Строение периферического отдела. Классификация рецепторов. Орган вкуса.

    Гистология - наука о микроскопическом и субмикроскопическом строении, развитии и жизнедеятельности тканей животных организмов. Гистология, как учебная дисциплина, включает в себя следующие разделы: цитологию, эмбриологию, общую гистологию (изучает строение и функции тканей), частную гистологию (изучает микроскопическое строение органов). Основным объектом изучения гистологии является организм здорового человека. Основная задача гистологии состоит в изучении строения клеток, тканей, органов, установления связей между различными явлениями, установление общих закономерностей. Современный этап развития гистологии - внедрение не только электронного микроскопа, но и других методов: цито - и гистохимии, гисторадиографии и других вышеперечисленных современных методов. Основным методом исследования биологических объектов, используемым в гистологии, является микроскопирование, т. е. изучение гистологических препаратов под микроскопом. Различают следующие виды микроскопии:

    • световая микроскопия (разрешающая способность 0,2 мкм) наиболее распространенный вид микроскопии;

    • ультрафиолетовая микроскопия (разрешающая способность 0,1 мкм);

    • люминесцентная (флюоресцентная) микроскопия для определения химических веществ в рассматриваемых структурах;

    • фазово-контрастная микроскопия для изучения структур в неокрашенных гистологических препаратов;

    • поляризационная микроскопия для изучения, главным образом, волокнистых структур;

    • микроскопия в темном поле для изучения живых объектов;

    • микроскопия в падающем свете для изучения толстых объектов;

    • электронная микроскопия (разрешающая способность до 0,1—0,7 нм), две ее разновидности просвечивающая (трансмиссионная) электронная микроскопия и сканирующая или растровая микроскопии дает отображение поверхности ультраструктур.

    Гистохимические и цитохимические методы позволяет определять состав химических веществ, и даже их количество в изучаемых структурах. Метод гистоавторадиографии позволяет выявить состав химических веществ в структурах и интенсивность обмена по включению радиоактивных изотопов в изучаемые структуры. Метод дифференциального центрифугирования позволяет изучать отдельные органеллы или даже фрагменты, выделенные из клетки. Метод интерферометрии позволяет определить сухую массу веществ в живых или фиксированных объектах. Иммуноморфологические методы позволяет с помощью предварительно проведенных иммунных реакций, на основании взаимодействия антиген-антитело, определять субпопуляции лимфоцитов, определять степень чужеродности клеток, проводить гистологическое типирование тканей и органов (определять гистосовместимость) для трансплантации органов. Метод культуры клеток (in vitro, in vivo) выращивание клеток в пробирке или в особых капсулах в организме и последующее изучение живых клеток под микроскопом.
    К скелетным соединительным тканям относятся хрящевые и костные ткани, выполняющие опорную, защитную и механическую функции, а также принимающие участие в обмене минеральных веществ в организме. Хрящевая ткань состоит из клеток — хондроцитов, хондробластов и плотного межклеточного вещества, состоящего из аморфного и волокнистого компонентов. Хондробласты располагаются одиночно по периферии хрящевой ткани. Эти клетки синтезируют компоненты межклеточного вещества, выделяют их в межклеточную среду и постепенно дифференцируются в дефинитивные клетки хрящевой ткани — хондроциты. Хондробласты обладают способностью митотического деления. Изогенная группа является общей структурно-функциональной единицей хрящевой ткани. Расположение хондроцитов в изогенных группах в разных хрящевых тканях неодинаково. Межклеточное вещество хрящевой ткани состоит из волокнистого компонента (коллагеновых или эластических волокон) и аморфного вещества, в котором содержатся главным образом сульфатированные гликозоаминогликаны (прежде всего хондроитинсерные кислоты), а также протеогликаны. Гиалиновая хрящевая ткань характеризуется наличием в межклеточном веществе только коллагеновых волокон. По физическим свойствам гиалиновая хрящевая ткань характеризуется прозрачностью, плотностью и малой эластичностью. В организме человека гиалиновая хрящевая ткань широко распространена и входит в состав крупных хрящей гортани, трахеи и крупных бронхов, составляет хрящевые части ребер, покрывает суставные поверхности костей. Эластическая хрящевая ткань характеризуется наличием в межклеточном веществе как коллагеновых, так и эластических волокон. По физическим свойствам эластическая хрящевая ткань непрозрачна, эластична, менее плотная и менее прозрачная, чем гиалиновая хрящевая ткань. Она входит в состав эластических хрящей: ушной раковины и хрящевой части наружного слухового прохода, хрящей наружного носа, мелких хрящей гортани и средних бронхов, а также составляет основу надгортанника. Волокнистая хрящевая ткань характеризуется содержанием в межклеточном веществе мощных пучков из параллельно расположенных коллагеновых волокон. По физическим свойствам характеризуется высокой прочностью. В организме встречается лишь в ограниченных местах: составляет часть межпозвоночных дисков.

    В надхрящнице выделяют два слоя:

    • наружный — фиброзный;

    • внутренний — клеточный или камбиальный (ростковый).

    Во внутреннем слое локализуются малодифференцированные клетки — прехондробласты и неактивные хондробласты, которые в процессе эмбрионального и регенерационного гистогенеза превращаются вначале в хондробласты, а затем в хондроциты. В фиброзном слое располагается сеть кровеносных сосудов. Развитие хрящевой ткани (хондрогистогенез) осуществляется из мезенхимы. В процессе развития хряща отмечается два вида роста хряща: интерстициальный рост — за счет размножения хондроцитов и выделения ими межклеточного вещества; оппозиционный рост — за счет деятельности хондробластов надхрящницы и наложения хрящевой ткани по периферии хряща.
    Сенсорная система обеспечивает восприятие организмом информации о состоянии внешней и внутренней среды, а также ее обработку и трансформацию в ощущения. Все эти функции осуществляются анализаторами и их периферическими отделами — органами чувств. Анализаторы — это сложные структурно-функциональные системы, связывающие центральную нервную систему с внешней и внутренней средой. Они являются афферентной частью рефлекторных дуг. Каждый анализатор состоит из трех частей:

    • периферической, в которой происходит восприятие раздражения;

    • промежуточной или кондуктивной, представленной проводящими путями и подкорковыми образованиями;

    • центральной, образованной участком коры головного мозга, где идет анализ информации и синтез ощущения.

    Органы чувств являются периферическими частями анализаторов. Выделяют три типа органов чувств:

    • I тип образован органами, развивающимися из нейроэктодермы. Рецепторные клетки в этих органах являются нервными клетками и называются первичночувствующими (первичночувствующие рецепторы). Такими органами являются органы зрения и обоняния;

    • II тип органов чувств представлен органами слуха, равновесия, вкуса. В этих органах раздражения воспринимают эпителиальные клетки, которые называются сенсоэпителиальными, развивающиеся из кожной эктодермы. Сенсоэпителиальные клетки называются вторичночувствующими (вторичночувствующие рецепторы). С ними контактируют дендриты чувствительных нервных клеток, которые передают воспринятое раздражение на свой нейрон;

    • III тип органов чувств представлен инкапсулированными и неинкапсулированными нервными окончаниями. Их строение как правило не имеет органного принципа (исключение инкапсулированные нервные окончания). Все они являются дендритами нейронов чувствительных ганглиев.

    Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта. Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора. Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике. Раздражение одних сосочков вызывает ощущение только сладкого одного вкуса. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.
    БИЛЕТ №2

    1. Критические периоды онтогенеза: сущность, влияние экологических и социальных факторов.

    2. Лейкоциты: содержание, классификация. Лейкоцитарная формула. Ее возрастные особенности.

    3. Мужская половая система: органы, тканевой состав, источники и стадии развития, функции.

    В процессе индивидуального развития имеются критические периоды, когда повышена чувствительность развивающегося организма к воздействию повреждающих факторов внешней и внутренней среды. Выделяют несколько критических периодов развития. Такими наиболее опасными периодами являются: 

    1) время развития половых клеток - овогенез и сперматогенез; 

    2) момент слияния половых клеток - оплодотворение; 

    3) имплантация зародыша (4-8-е сутки эмбриогенеза); 

    4) формирование зачатков осевых органов (головного и спинного мозга, позвоночного столба, первичной кишки) и формирование плаценты (3-8-я неделя развития); 

    5) стадия усиленного роста головного мозга (15-20-я неделя); 

    6) формирование функциональных систем организма и дифференцирование мочеполового аппарата (20-24-я неделя пренатального периода); 

    7) момент рождения ребенка и период новорожденности - переход к внеутробной жизни; метаболическая и функциональная адаптация

    8) период раннего и первого детства (2 года - 7 лет), когда заканчивается формирование взаимосвязей между органами, системами и аппаратами органов;

    9) подростковый возраст (период полового созревания - у мальчиков с 13 до 16 лет, у девочек - с 12 до 15 лет).

    К наиболее частым факторам, нарушающим нормальный эмбриогенез, принадлежат: перезревание женской половой клетки, нарушения обмена вещества у матери, гипоксия, содержание в крови матери токсических веществ, инфекция, особенно вирусная. Длительное перегревание организма матери приводит к аномалиям развития плода. Рентгеновское облучение опасно в связи с возможными мутациями, так как клетки эмбриональных зачатков особенно чувствительны к радиации. Это могут быть и закономерные действия среды, обеспечивающие обычное нормальное развитие, но в других концентрациях, с другой силой, в другое время.

    Лейкоциты- ядерные клетки крови, выполняющие защитную функцию. Содержатся в крови от нескольких часов до нескольких суток, а затем покидают кровяное русло и проявляют свои функции в основном в тканях. Лейкоциты представляют собой неоднородную группу и подразделяются на несколько популяций. Классификация лейкоцитов:

    Классификация лейкоцитов:

    1. зернистые (гранулоциты):

    нейтрофилы (65—75 %): юные (0—0,5 %); палочкоядерные (3—5 %); сегментоядерные (60—65 %);

    эозинофилы (1—5 %);

    базофилы (0,5—1,0 %);

    2. незернистые (агранулоциты):

    лимфоциты (20—35 %): Т-лимфоциты; В-лимфоциты;

    моноциты (6—8 %).

    Лейкоцитарная формула — это процентное соотношение различных форм лейкоцитов (к общему числу лейкоцитов — 100 %). В таблице классификации лейкоцитов представлена лейкоцитарная формула здорового организма.

    I. Нейтрофилы — самая большая популяция лейкоцитов (65—75 %). Морфологические особенности нейтрофилов:

    • сегментированное ядро;

    • в цитоплазме имеются мелкие гранулы, окрашивающиеся в слабо оксифильный (розовый) цвет, среди которых различают неспецифические азурофильные гранулы — разновидность лизосом, специфические гранулы, другие органеллы развиты слабо. Размеры в мазке 10—12 мкм.

    По степени зрелости нейтрофилы подразделяются на:

    • юные (метамиелоциты)0—0,5 %;

    • палочкоядерные 3—5 %;

    • сегментоядерные (зрелые)60—65 %.

    Увеличение процентного содержания юных и палочкоядерных форм нейтрофилов носит название сдвига лейкоцитарной формулы влево и является важным диагностическим показателем. Продолжительность жизни нейтрофилов 8 дней, из них 8—12 ч они находятся в крови, а затем выходят соединительную и эпителиальную ткани, где и выполняют основные функции. Функции нейтрофилов:

    • фагоцитоз бактерий;

    • фагоцитоз иммунных комплексов (антиген-антитело);

    • бактериостатическая и бактериолитическая;

    • выделение кейлонов и регуляция размножения лейкоцитов.

    II.Эозинофилы. Содержание в норме 1—5 %, размеры в мазках 12—14 мкм. Морфологические особенности эозинофилов: двухсегментное ядро и в цитоплазме крупная оксифильная (красная) зернистость. Функции эозинофилов:

    • участвуют в иммунологических (аллергических и анафилактических) реакциях, угнетают (ингибируют) аллергические реакции посредством нейтрализации гистамина и серотонина несколькими способами:

    • фагоцитируют гистамин и серотонин, выделяемые базофилами и тучными клетками, а также адсорбируют эти биологически активные вещества на цитолемме;

    • выделяют ферменты, расщепляющие гистамин и серотонин внеклеточно;

    • выделяют факторы, препятствующие выбросу гистамина и серотонина базофилами и тучными клетками;

    • способны фагоцитировать бактерии, но в незначительной степени.

    Продолжительность жизни эозинофилов 6—8 дней, из них нахождение в кровеносном русле составляет 3—8 ч.

    III. Базофилы. Это наименьшая популяция лейкоцитов (0,5—1 %), однако в общей массе в организме их огромное количество. Размеры в мазке 11—12 мкм. Морфологические особенности базофилов:

    • к рупное слабо сегментированное ядро;

    • в цитоплазме содержатся крупные гранулы, окрашивающиеся основными красителями, метахроматично, за счет содержания в них гликозоаминогликанов — гепарина, а также гистамина, серотонина и других биологически активных веществ;

    • другие органеллы развиты слабо.

    Функции базофилов заключают в участии в иммунных (аллергических) реакциях посредством выделения гранул (дегрануляции). Некоторые варианты изменения (сдвига) лейкоцитарной формулы:
    Мужская половая система выполняет важные функции: обеспечивает полноценное развитие половых клеток, их кондиционирование (окончательное структурное и функциональное созревание) и выведение, копулятивную функцию, а также биосинтез мужских половых гормонов. В соответствии с этими функциями в состав мужской половой системы входят три группы органов:

    • гонады — яички;

    • органы депонирования семени и семя выведения (придаток, семявыносящий проток, семизвергательный канал);

    • добавочные половые органы — семенные пузырьки, предстательная железа, половой член (пенис).

    Закладка гонад у человека начинается на 4-ой неделе внутриутробного периода с индифферентной стадии, в виде образования утолщений эпителиальной ткани корня брыжейки. При этом образуются половые валики, располагающиеся на верхней поверхности первичной почки. Дальнейшее развитие полового аппарата происходит в тесной взаимосвязи с почкой. Дифференцировка тканей начинается с 6-ой недели, в мужском организме в половые валики мигрируют гонобласты желточного мешка — первичные половые клетки. После этого от половых валиков в строму первичной почки врастают половые шнуры, в состав которых входят первичные половые клетки — сперматогонии.
    БИЛЕТ № 3

    1. Плазмолемма: слои, химический состав, функции. Межклеточные контакты, их типы, структурно-функциональная характеристика.

    2. Гипофиз: части, отделы, источники развития. Строение адено - и нейрогипофиза, гормоны, кровоснабжение. Понятие о гипоталамо-аденогипофизарной и гипотала - монейрогипофизарной системах.

    3. Ротовая полость: составные компоненты, особенности слизистой оболочки. Строение и функции языка.

    Плазмолемма - оболочка животной клетки, ограничивающая ее внутреннюю среду и обеспечивающая взаимодействие клетки с внеклеточной средой. Плазмолемма имеет толщину около 10 нм, и состоит на 40 % из липидов, на 5—10 % из углеводов (в составе гликокаликса), и на 50—55 % из белков. Функции плазмолеммы:

    • разграничивающая (барьерная);

    • рецепторная или антигенная;

    • транспортная;

    • образование межклеточных контактов.

    Основу строения плазмолеммы составляет двойной слой липидных молекул, в который местами включены молекулы белков, также имеется надмембранный слой гликокаликс, структурно связанный с белками и липидами билипидной мембраны, и в некоторых клетках имеется подмембранный слой.

    По локализации в мембране белки подразделяются на:

    По выполняемой функции белки плазмолеммы подразделяются на:

    • структурные белки;

    • транспортные белки;

    • рецепторные белки;

    • ферментные.

    Находящиеся на внешней поверхности плазмолеммы белки, а также гидрофильные головки липидов обычно связаны цепочками углеводов и образуют сложные полимерные молекулы гликопротеиды и гликолипиды. Различают следующие способы транспорта веществ:

    • пассивный транспорт способ диффузии веществ через плазмолемму (ионов, некоторых низкомолекулярных веществ) без затраты энергии;

    • активный транспорт веществ с помощью белков-переносчиков с затратой энергии (аминокислот, нуклеотидов и других);

    • везикулярный транспорт через посредство везикул (пузырьков), который подразделяется на эндоцитоз транспорт веществ в клетку, и экзоцитоз веществ из клетки.

    В свою очередь эндоцитоз подразделяется на:

    • фагоцитоз захват и перемещение в клетку крупных частиц (клеток или фрагментов, бактерий, макромолекул и так далее);

    • пиноцитоз перенос воды и небольших молекул.

    Процесс фагоцитоза подразделяется несколько фаз:

    • адгезия (прилипание) объекта к цитолемме фагоцитирующей клетки;

    • поглощение объекта путем образования вначале углубления (инвагинации), а затем и образования пузырьков — фагосомы и передвижения ее в гиалоплазму

      1   2   3   4   5   6   7   8   9   ...   18


    написать администратору сайта