Международная конференция. Определение основных параметров производственного и технологичес. Основными параметрами технологического процесса являются
Скачать 38.48 Kb.
|
Тема Определение основных параметров производственного и технологического процессов. Основными параметрами технологического процесса являются: точность (степень соответствия параметров изготовленного изделия тем параметрам, которые указаны в нормативно-технологической документации). Следует понимать, что причиной несоответствия являются производственные погрешности (систематические или случайные), и уметь анализировать причины их возникновения и результат воздействия их на ТП; стабильность - свойство технологического процесса (ТП) сохранять значения показателей качества продукции в заданных границах на протяжении определенного времени; производительность - свойство ТП обеспечивать выпуск определенного количества изделий на протяжении указанного промежутка времени. Различают производительность часовую, сменную, месячную и т.д.; себестоимость продукции, которая определяется расходами на ее изготовление. Кроме того, важным параметром является также технологичность конструкции изделий, которая может оцениваться как качественно, так и количественно, - путем расчета определенных показателей. 1. Трудоемкость и производительность Трудоемкость. Под трудоемкостью понимают количество времени, затрачиваемое на изготовление одного изделия определенным технологическим процессом. Трудоемкость определяется на основе опытно-статистического или расчетно-аналитического методов. Опытно-статистический метод основывается на анализе статистических данных о выполнении нормы времени технологических операций. Такой метод нормирования не стимулирует рост производительности труда, нередко вместе с достигнутыми успехами узаконивает отдельные неполадки предприятия. Расчётно-аналитический метод основывается на анализе операции по составляющим её элементам и определении продолжительности отдельных операций в целом. Этот метод исходит из научной организации труда, наиболее эффективного использования всех средств производства, учитывает передовой производственный опыт. Трудоемкость технологического процесса (норма времени) слагается из трудоемкости отдельных операций, которые определяются из выражения: tшт. о = to + tв + tт. o + to. о + tп, мин, (2.1) где to – основное технологическое время, затрачиваемое оборудованием на изменение формы, размеров, физико-механических свойств изделий в данной операции; tв – вспомогательное время, затрачиваемое на установку и снятие детали со станка, управление станком и механизацией; tт. o – время технического обслуживания, затрачиваемое на подналадку станка, смену рабочего инструмента и т.п.; to. о – время, затрачиваемое на организационное обслуживание рабочего места и станка, получение сменного задания; tп – время, затрачиваемое на отдых и естественные надобности исполнителя. Время, слагаемое из основного и вспомогательного, называется оперативным toп = to + tв. Основное технологическое время to, рассчитывается исходя из режима работы оборудования (скорости резания, числа ходов пресса в мин., времени термической обработки и т.п.). Составляющие нормы штучного времени tв, tт. o, to. о, tп определяют по научно-техническим обоснованным нормативам. Уменьшение tв и tт. o возможно повышением автоматизации всех действий технологического оборудования. Значительное сокращение этих составляющих достигается при использовании оборудования с ЧПУ, промышленных роботов. Общая расчетная трудоемкость всего технологического процесса tшт слагается из трудоемкости выполнения всех операций , (2.2) где n – количество операций, подлежащих выполнению в данном технологическом процессе. В том случае, когда изготовление деталей выполняют партиями, к расчетной трудоемкости (норме времени) добавляется время на наладку и подналадку оборудования, которое называют подготовительно-заключительным. Тогда норму времени на операцию, которое называют штучно-калькуляционным временем, рассчитывают по формуле tшт. к. = tшт + tп. з. /N, (2.3) где tшт. к. – штучно-калькуляционное время, мин; tп. з – подготовительно-заключительное время; N – объем партии деталей. Производительность. Под производительностью технологического процесса понимают количество изделий, изготавливаемых в единицу времени. В условиях серийного или массового производства производительность определяется выражением , (2.4) где Q – производительность, Ф – фонд рабочего времени (час, смена), который выражается в мин.; tшт – трудоемкость (норма времени) изготовления одной детали определенным технологическим процессом. При изготовлении деталей небольшими партиями (единичное или мелкосерийное производство) производительность равна , (2.5) где tшт. к – штучно-калькуляционное время на изготовление одного изделия. 2. Технологическая стоимость Критерием оценки эффективности технологического процесса служит технологическая себестоимость, которая является основной частью полной себестоимости изделия. Технологическую себестоимость детали (Сд) ориентировочно можно определить по формуле , (2.6) где См - стоимость материала заготовки за вычетом стоимости реализуемых отходов; Сз. р - зарплата производственных рабочих; Сз. н – зарплата настройщиков (наладчиков), если технологическое оборудование требует настройки для выполнения операций; N - годовая программа выпуска деталей (шт); Сам - стоимость амортизации и ремонта технологического оборудования и оснастки; Сэн - стоимость энергии, затрачиваемой на каждую деталь всеми операциями технологического процесса; Ссп. о - стоимость специального технологического оборудования и специальной технологической оснастки, содержания и эксплуатации их. Заработная плата производственных рабочих определяется из выражения , (2.7) где n – количество операций; tшт. o i – трудоемкость (норма штучного времени) выполнения i-той операции; Si – часовая тарифная ставка выполнения i-той операции; Ki – коэффициент заработной платы. Заработная плата наладчиков определяется по формуле , (2.8) где m – количество технологических операций, в которых применяется наладка; tн i – норма времени настройки технологического оборудования и оснастки i-той операции; Рi – количество настроек с учетом переналадок оборудования в год. Величина технологической стоимости зависит от ряда факторов и в первую очередь от объема производства. Для установления этой зависимости все расходы делятся на текущие a и единовременные b. Тогда выражение (2.6) имеет вид Сд = a + b/N, (2.9) где а = См + Сз. р + Сэн + Сам; b = Сз. н + Ссп. о; N – планируемый выпуск изделий. Выражение (2.9) для определения себестоимости детали можно представить гиперболой (рис.2.1), асимптотически приближается при увеличении программы выпуска N к значению a. Участок кривой А соответствует малой загрузке оборудования (единичному и мелкосерийному производству), когда небольшое изменение программы ∆N резко влияет на величину ∆Сд. Участок Б соответствует условиям серийного производства; участок В соответствует условиям большой загрузки оборудования, что аналогично условиям массового производства, когда значительное изменение программы ∆N очень мало отражается на изменении себестоимости. Технологическая стоимость изделий Сn в зависимости от программы выпуска N равна Сn = a. N + b. (2.10) Уравнение (2.10) для определения себестоимости деталей от программы можно представить прямой, отсекающей на оси ординат отрезок b (рис.2.2), характеризующий величину единовременных затрат на годовую партию. При этом величина текущих затрат линейно зависит от объема выпуска изделий, а на наклон прямой влияет переменная a = tgα, т.е. чем больше текущие затраты, тем больше угол α. Формула (2.10) и ее графическое изображение является удобной при выборе оптимального технологического процесса из нескольких по технологической себестоимости. При этом исходят из существующей закономерности соотношения единовременных и текущих затрат: технологические процессы с более крупными единовременными затратами имеют меньшие значения текущих затрат, т.е. b1> b2 > b3, а1< a2 < a3. Такая закономерность проявляется при внедрении автоматизированного оборудования с ЧПУ, промышленных роботов. На рис.2.3. представлено графическое изображение трех технологических процессов с различными значениями а и b. Прямая a3 пересекается с прямой a2 в точке А, определяющей величину партии N1. При увеличении партии технологический вариант с текущими затратами a3 становится менее эффективным, чем вариант с текущими затратами a2. Прямая a2 пересекается с прямой а1 в точке В, определяющей величину партии N2, с увеличением которой технологический вариант с текущими затратами a2 становится менее выгодным, чем вариант с текущими затратами а1. Таким образом, решение задачи выбора оптимального технологического варианта по технологической стоимости в конечном счете сводится к определению величины критической партии, при которой себестоимость двух сравниваемых вариантов становится равноценной. Найти величину критической партии можно из равенства или , откуда . (2.11) Если программа выпуска N > N2, то более выгодным является технологический процесс с большим значением единовременных затрат и меньшим текущих затрат. 3. Точность Под точностью технологического процесса понимают степень обеспечения изготовляемых изделий высокого качества в соответствии с техническими требованиями, которые определяются рабочими чертежами. Качество деталей характеризуется точностью обеспечения геометрических размеров, формы, взаимного расположения поверхностей и их шероховатостью, а также физико-механическими параметрами материала деталей (твердостью, прочностью, электропроводностью, магнитной проницаемостью и др.), которые зависят от их назначения. Геометрическая точность деталей определяется величинами отклонений линейных размеров, формы и взаимного расположения поверхностей от их номинальных значений. В рабочих чертежах линейные размеры указываются в виде , где А - номинальное значение размера; а, b – допустимое верхнее и нижнее значения отклонений, под которыми понимают алгебраическую разность между наибольшими Аmax или наименьшими Аmin предельными и номинальными размерами а = Аmax – Аном; b = Аmin – Аном. (2.12) Разность верхнего и нижнего отклонений называют допуском δ δ = а – (-b) = а + b или δ = (Amax – Аном) – (Аmin – Аном) = Аmax – Аmin. (2.13) Верхнее и нижнее отклонения размеров могут быть как положительными, так и отрицательными, но допуск всегда является положительным. Например, в размерах , 30±0,05, видно, что в первом нижнее отклонение является положительным, а в третьем – отрицательным, но допуск во всех размерах является положительным δ = 0,1. Государственными стандартами (ГОСТ 25670-83) регламентирован расчет и определение допусков. Согласно этому все номинальные размеры разбиваются на определенные интервалы в миллиметрах (например, 3-6, 6-10, 10-18, 18-30 и т.д.) и для каждого из этих интервалов определяют единицу допуска в мкм. , (2.14) где - среднеарифметическое значение каждого интервала. Тогда величина допуска δ = аi, (2.15) где а – число единиц допуска. Для условного обозначения допусков на размеры вводится понятие квалитета, который состоит из латинской буквы и цифры – квалитета. Поле допуска в системе отверстий обозначается буквой Н, а в системе вала – строчной буквой h, например, Н12, h12. Стандартами установлено 19 квалитетов: 01, 0, 1, 2, …, 17, из которых при изготовлении деталей РЭС используются только 10 (от 5 до 14). Расчетная величина допусков аi соответствует определенному значению квалитета:
В ранее существующих стандартах квалитету соответствовало понятие класса точности. В табл.2.1. приведено сопоставление квалитетов и соответствующих им классов точности. Таблица 2.1
Форма и расположение поверхностей деталей, к которым относятся неплоскостность, непрямолинейность, несимметричность, несоосность, отклонение от цилиндричности и др. нормированы ГОСТ 24643-81. Номинальные значения этих параметров приняты равными нулю, а в рабочих чертежах указываются только их предельные отклонения. С технологической точки зрения заданные допуски на деталь ограничивают допустимую общую погрешность изготовления, которая слагается из погрешностей, возникающих на всех операциях технологического процесса. Чем жестче допуски на изделие, тем более высокие требования предъявляются к точности технологического оборудования и оснастки, к выбору методов и режимов изготовления. Точность изготовления деталей зависит от погрешностей, возникающих в процессе производства на всех операциях технологического процесса, т.е. от производственных погрешностей. Все производственные погрешности могут быть разделены на систематические и случайные. Систематические погрешности вызываются определенно действующими детерминированными причинами. Они могут быть постоянными или изменяющимися во времени. Например, неточность в измерительных устройствах станка, постоянный износ технологической оснастки (режущего инструмента, штампов, пресс-форм). Случайными называют погрешности, возникающие под действием неуправляемых факторов технологического процесса, причем их значение не подчиняется каким-либо видимым закономерностям. Характер изменения и значение случайных производственных погрешностей не может быть определен без статистических методов обработки результатов измерения. Случайные погрешности вызываются неточностью установки деталей, инструмента, колебаниями припусков, неравномерностью обработки, непостоянством состава применяемых материалов и т.п. |