покозатели. показатели. Относительные величины
Скачать 195.03 Kb.
|
ОТНОСИТЕЛЬНЫЕ ВЕЛИЧИНЫ Абсолютные величины несут важную информацию о размере того или иного явления и могут быть использованы в анализе, в том числе в сравнительном. Однако они часто не отвечают на все поставленные вопросы, так, например, врачу интересны сведения о здоровье обслуживаемого населения (показатели заболеваемости и др.), а у него есть информация только в абсолютных числах, которые термин "заболеваемость" не характеризуют. Для более углубленного анализа общественного здоровья и деятельности учреждений здравоохранения, а также деятельности медицинского работника используются обобщающие показатели, называемые относительными величинами. Они применяются для изучения совокупности, которая характеризуется, главным образом, альтернативным распределением качественных признаков.
Различают четыре вида относительных величин: экстенсивные, интенсивные, соотношения и наглядности.
Это показатель удельного веса, доли части в целой совокупности, показатель распределения совокупности на составляющие ее части, т.е. показатель структуры. Для его расчета необходимо иметь данные о численности всей совокупности и составляющих ее частях (или отдельной части этой совокупности). Рассчитывается обычно в процентах, где совокупность в целом принимается за 100%, а отдельные части — за "X". Способ получения экстенсивной величины выглядит следующим образом: Таким образом, для получения экстенсивного показателя нужна совокупность и ее составные части или отдельная часть. Экстенсивный показатель отвечает на вопрос, сколько процентов приходится на каждую конкретную часть совокупности. В зависимости от того, что характеризуют экстенсивные показатели, их называют: показатели удельного веса части в целом, например, удельный вес гриппа среди всех заболеваний; показатели распределения или структуры (распределение всей совокупности зарегистрированных врачом заболеваний за год на отдельные заболевания). Это показатель статики, т.е. с его помощью можно анализировать конкретную совокупность в конкретный момент. По экстенсивным показателям нельзя сравнивать различные совокупности — это приводит к неправильным, ошибочным выводам (см. Ошибки использования относительных величин). Пример расчета экстенсивного показателя В районе А в текущем году было зарегистрировано 500 случаев инфекционных заболеваний, из них: эпидемического паротита — 60 случаев; кори — 100 случаев; прочих инфекционных заболеваний — 340 случаев. Задание: определить структуру инфекционных заболеваний, проанализировать и представить графически. Решение: Вся совокупность — 500 случаев инфекционных заболеваний принимается за 100 %, составные части определяются как искомые. Удельный вес случаев эпидемического паротита составит: 60 x 100% / 500 = 12%. Аналогично рассчитывается удельный вес других заболеваний. Вывод. В структуре инфекционных заболеваний доля эпидемического паротита составила 12%, кори — 20%, прочих инфекционных заболеваний — 68%. Способы графического изображения экстенсивного показателя Поскольку экстенсивный показатель — показатель статики, то графически он изображается только в виде внутристолбиковой или секторной (круговой) диаграммы, которые являются разновидностями плоскостных диаграмм, которые представляют цифровые данные в виде геометрических фигур в двух измерениях. Правила построения этих диаграмм можно представить, использовав при этом полученные данные удельного веса заболеваний в приведенном выше примере. Пример построения секторной диаграммы (диаграмма 1, А): Радиусом произвольного размера описывается окружность, которая принимается за 100% (если экстенсивные показатели выражены в процентах); при этом 1% соответствует 3,6° окружности. На окружности откладываются отрезки, соответствующие величинам распределяемой совокупности: удельный вес кори составляет 20%, эпидемического гепатита — 12%, прочих инфекционных заболеваний — 68% (соответственно в градусах — 72°; 43,2°; 244,8°). Соответствующие этим градусам отрезки соединяются линиями с центром окружности, образуя секторы. Каждый сектор представляет составную часть изучаемой совокупности. При этом необходимо помнить, что сумма всех удельных весов должна равняться 1%, а сумма отрезков в градусах должна составлять 360°. |