Пептид если от 10 до 40 аминокислот полипептид
Скачать 7.45 Mb.
|
4 вопросФизико-химические свойства белков: молекулярная масса, размеры и форма белковой молекулы, растворимость. Факторы стабилизации белковых растворов. Механизм возникновения электрического заряда белков, зависимость от рН. Изоэлектрическая точка белка. Наиболее характерными физико-химическими свойствами белков являются: высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению Уф-лучей при 280 нм (это последнее свойство, обусловленное наличием в белках ароматических аминокислот, используется для количественного определения белков). М колеблется от 6 тыс. до 1 млн. зависит от кол-ва аминокислотных остатков полипептидной цепи. Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2-и СООН-групп и характеризуются соответственно всеми св-вами кислот и оснований. Белки обладают явно выраженными гидрофильными свойствами. Их растворы обладают очень низким осмотическим давлением, высокой вязкостью и незначительной способностью к диффузии. Белки способны к набуханию в очень больших пределах. С коллоидным состоянием белков связан рад характерных свойств, в частности явление светорассеяния, лежащее в основе количественного определения белков методом нефелометрии. Этот эффект используется, кроме того, в современных методах, микроскопии биологических объектов. Молекулы белка не способны проходить через, полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей, хотя при органических поражениях, например почек, капсула почечного клубочка (Шумлянского-Боумена) становится проницаемой для альбуминов сыворотки крови, и они появляются в моче. Простые белки построены из аминокислот и при гидролизе распадаются соответственно только на аминокислоты. Сложные белки - это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождаются небелковая часть или продукты ее распада. Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др. Классификация сложных белков основана на химической природе входящего в их состав небелкового компонента. В соответствии с этим различают: фосфопротеины (содержат фосфорную кислоту), хромопротеины (в состав их входят пигменты), нуклеопротеины (содержат нуклеиновые кислоты), гликопротеины (содержат углеводы), липопротеины (содержат липиды) и металлопротеины (содержат металлы). По форме молекул белки делят на глобулярные и фибриллярные. Глобулярные имеют более компактную структуру, их гидрофобные радикалы в большинстве своем спрятаны в гидрофобное ядро, и они значительно лучше растворимы в жидкостях организма, чем фибриллярные. Белки являются амфолитами (сокращение от слов "амфотерне электролиты"), т.е. они содержат как положительно, так и отрицательно заряженные аминокислотные остатки при характерных для клетки значениях pН. Заряд боковых R-групп аминокислот зависит от значения pН: при высоких значениях pН карбоксильные группы в водном растворе легко теряют Н+ и приобретают отрицательный заряд, тогда как у аминогрупп заряд отсутствует, а при низких значениях pН наблюдается обратная ситуация - карбоксильные группы не несут заряда, тогда как аминогруппы захватывают из водного раствора ион Н+ и приобретают положительный заряд. Поэтому при низких pН белки заряжены положительно, а при высоких - отрицательно. Поскольку содержание и состав аминокислот, способных к обратимой ионизации, различны для разных белков, то для каждого белка существует свое характерное значение pН, при котором он является незаряженным; это значение называется изоэлектрической точкой (ИЭТ) и обозначается как pI. Нуклеиновые кислоты в водных растворах всегда сильно отрицательно заряжены, т.к. сахарофосфатный остов ДНК и РНК имеет отрицательный заряд фосфатных групп, которые депротонированы при характерных для клеток значениях pН. Многие белки растворяются в воде, что обусловлено наличием на поверхности белковой молекулы свободных гидрофильных групп. Растворимость белка в воде зависит от структуры белка, реакции среды, присутствия электролитов. В кислой среде лучше растворяются белки, обладающие кислыми свойствами, а в щелочной - белки, обладающие основными свойствами. Альбумины хорошо растворяются в дистиллированной воде, а глобулины растворимы в воде только в присутствии электролитов. Не растворяются в воде белки опорных тканей (коллаген, кератин, эластин и др.). Факторы стабилизации белка в растворе: 1) Гидратная оболочка - это слой молекул воды, определенным образом ориентированных на поверхности белковой молекулы. Поверхность большинства белковых молекул заряжена отрицательно, и диполи молекул воды притягиваются к ней своими положительно заряженными полюсами. 2) Заряд белковой молекулы. Поверхность большинства белковых молекул заряжена потому, что в каждой молекуле белка есть свободные заряженные СОО- и NH3+ группы. Изоэлектрическая точка (ИЭТ) большинства белков организма находится в слабокислой среде. Это означает, что у таких белков количество кислотных (СООН) групп больше количества основных групп (NH3). рН плазмы крови около 7,36 - это выше ИЭТ большинства белков, поэтому в плазме крови белки имеют отрицательный заряд. |