№ п/п
| Формулировка вопроса
|
1.
| Первичная структура белков. Видовая специфичность белков. Наследственные изменения первичной структуры. Полиморфизм белков. Наследственные протеинопатии: серповидно-клеточная анемия, другие примеры.
|
2.
| Конформация белковых молекул (вторичная и третичная структуры). Типы внутримолекулярных связей в белках. Роль пространственной организации пептидной цепи в образовании активных центров. Конформационные изменения при функционировании белков.
|
3.
| Четвертичная структура белков. Кооперативные изменения конформации протомеров. Примеры строения и функционирования олигомерных белков: гемоглобин (в сравнении с миоглобином, аллостерические ферменты).
|
4.
| Понятие о ферментах. Специфичность действия ферментов. Кофакторы ферментов. Зависимость скорости ферментативных реакций от концентрации субстрата, фермента, температуры и рН. Принципы количественного определения ферментов. Единицы активности.
|
5.
| Понятие об активном центре фермента. Механизм действия ферментов. Ингибиторы ферментов: обратимые и необратимые, конкурентные. Применение ингибиторов в качестве лекарств.
|
6.
| Регуляция действия ферментов: аллостерические механизмы, химическая (ковалентная) модификация. Белок-белковые взаимодействия. Примеры метаболических путей, регулируемых этими механизмами. Физиологическое значение регуляции действия ферментов.
|
7.
| Роль ферментов в метаболизме. Многообразие ферментов. Понятие о классификации. Наследственные первичные энзимопатии: фенилкетонурия, алкаптонурия. Другие примеры наследственных энзимопатий. Вторичные энзимопатии. Значение ферментов в медицине.
|
8.
| Понятие о катаболизме и анаболизме и их взаимосвязи. Эндоргонические и экзергонические реакции в метаболизме. Способы передачи электронов. Особенности протекания окислительных реакций в организме. Этапы расщепления веществ и освобождения энергии (этапы катаболизма).
|
9.
| Оксидоредуктазы. Классификация. Характеристика подклассов. НАД-зависимые дегидрогеназы. Строение окисленной и восстановленной форм. Важнейшие субстраты НАД-зависимых дегидрогеназ. ФАД-зависимые дегидрогеназы: сукцинатдегидрогеназа и ацилКоА-дегидрогеназа.
|
10.
| Окислительное декарбоксилирование пирувата и цикл Кребса: последовательность реакций, связь с дыхательной цепью, регуляция, значение.
|
11.
| Дыхательная цепь, компоненты, структурная организация. Электрохимический потенциал, его значение.
|
12.
| Окислительное фосфорилирование АДФ. Механизм. Сопряжение и разобщение окисления и фосфорилирования в дыхательной цепи. Коэффициент Р/0. Регуляция дыхательной цепи.
|
13.
| Субстратное фосфорилирование АДФ. Отличия от окислительного фосфорилирования. Основные пути использования АТФ. Цикл АДФ-АТФ. Понятие о свободном окислении и его значение. Тканевые особенности окислительно-восстановительных процессов.
|
14.
| Функции углеводов. Потребность организма в углеводах. Переваривание углеводов. Нарушения переваривания и всасывания углеводов. Унификация моносахаридов. Роль печени в обмене углеводов.
|
15.
| Биосинтез и мобилизация гликогена: последовательность реакций, физио- логическое значение. Регуляция обмена гликогена. Гликогенозы и агликогенозы.
|
16.
| Анаэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль анаэробного распада глюкозы в мышцах. Дальнейшая судьба молочной кислоты.
|
17.
| Аэробный распад глюкозы: последовательность реакций, физиологическое значение. Роль аэробного распада глюкозы в мышцах при мышечной работе. Роль аэробного распада глюкозы в мозге.
|
18.
| Биосинтез глюкозы (глюконеогенез): возможные предшественники, последовательность реакций. Глюкозо-лактатный цикл (цикл Кори) и глюкозо-аланиновый цикл: физиологическое значение. Значение и регуляция глюко-неогенеза из аминокислот.
|
19.
| Пентозофосфатный путь превращения глюкозы. Окислительный путь образования пентоз. Представление о неокислительном пути образования гексоз. Распространение, роль, регуляция.
|
20.
| Глюкоза крови: источники, регуляция гормонами. Гипо- и гипергликемия, причины. Сахарные нагрузки и сахарные кривые, значение в диагностике.
|
21.
| Функции липидов. Пищевые жиры; норма суточного потребления, переваривание, всасывание продуктов переваривания. Ресинтез жиров в клетках кишечника. Хиломикроны, строение, значение, метаболизм. Пределы изменения концентрации жиров в крови.
|
22.
| Окисление глицерина и высших жирных кислот. Последовательность реакций. Связь β-окисления с циклом Кребса и дыхательной цепью. Физиологическое значение окисления жирных кислот в зависимости от ритма питания и мышечной активности.
|
23.
| Липолиз и липогенез. Значение. Зависимость липогенеза от ритма питания и состава пищи. Регуляция липолиза и липогенеза. Транспорт и использование жирных кислот, образующихся при мобилизации жира.
|
24.
| Биосинтез жирных кислот: последовательность реакций, физиологическое значение, регуляция.
|
25.
| Пути образования и использования ацетил-КоА. Биосинтез и значение кетоновых тел. Пределы изменений концентрации кетоновых тел в крови в норме, при голодании и сахарном диабете.
|
26.
| Синтез холестерина, регуляция. Биологическое .значение холестерина. Атеросклероз. Факторы риска для развития атеросклероза.
|
27.
| Транспортные липопротеиды крови: особенности строения, состава и функций разных липопротеидов. Роль в обмене жиров и холестерина. Пределы изменений концентрации жиров и холестерина в крови. Патология липидного обмена.
|
28.
| Функции пептидов и белков. Суточная потребность в белках. Переваривание белков. Регуляция переваривания белков. Патология переваривания и всасывания белков.
Белки выполняют разные функции в организме:
Ферментативная. Ферменты по химической природе – белки. Защитная. Сюда относятся антигены, иммуноглобулины и т. д. Гормональная. Многие гормоны, например, инсулин, соматотропный, паратгормон, являются белками. Структурообразовательная. Ногти, волосы состоят из белков. Опорная. Сюда относятся костная ткань, хрящевая. Сократительная, связана с движением белков мышц, сокращением ресничек, движением сперматозоидов. Энергетическая. При сгорании 1 г. белков образуется 16,8 кДж энергии. Транспортная. Эту функцию выполняют белки-переносчики: гемоглобин, альбумины, глобулины и т. д. Специфическая - характерна для белков плазмы крови, которые обеспечивают кислотно-основное равновесие, вязкость крови, групповую принадлежность и т. д.
Суточная потребность: Для взрослых при средней физической нагрузке – 100 -120 г белков в сутки. При тяжелой мышечной работе – 130 – 150 г в сутки. Детям до 12 лет – 50 – 70 г в сутки. Полноценные белки – это белки, имеющие в своем составе весь или практически весь спектр незаменимых аминокислот (чаще животные белки).
Неполноценные белки - белки, содержащие малую часть незаменимых аминокислот (чаще растительные белки, бедны лизином, метионином).
Переваривание белков:
В тетради !!!
|
29.
| Источники аминокислот и пути их использования. Заменимые и незаменимые аминокислоты. Биосинтез заменимых аминокислот с использованием глюкозы. Источники азота для аминокислот. Глюконеогенез из аминокислот: регуляция, физиологическое значение.
В тетради
|
30.
| Декарбоксилирование аминокислот. Его сущность. Декарбоксилирование гистидина, серина, цистеина, орнитина, лизина и глутамата. Роль биогенных аминов в регуляции метаболизма и функций.
Декарбоксилирование аминокислот - это отщепление от аминокислоты карбоксильной группы. Процесс катализируется декарбоксилазами, в состав которых входит витамин В6 . В большинстве случаев при декарбоксилировании аминокислот образуются амины (исключением является глутамат, при декарбоксилировании которого образуется -аминомасляная кислота). В тетради!
|
31.
| Трансаминирование аминокислот. Специфичность аминотрансфераз. Значение реакций трансаминирования. Непрямое дезаминирование аминокислот: последовательность реакций, ферменты, биологическое значение.
|
32.
| Образование и пути использования аммиака. Биосинтез мочевины: последовательность реакций, регуляция. Гипераммониемия.
|
33.
| Обмен фенилаланина и тирозина. Наследственные нарушения обмена фенилаланина и тирозина. Значение серина, глицина и метионина.
|
34.
| Синтез креатина: последовательность реакций, значение креатинфосфата. Физиологическая креатинурия. Значение креатинкиназы и креатинина в диагностике.
|
35.
| Нуклеозиды, нуклеотиды и нуклеиновые кислоты, строение, значение. Отличия ДНК и РНК. Нуклеопротеиды. Переваривание нуклеопротеидов.
|
36.
| Катаболизм пуриновых и пиримидиновых оснований. Гиперурикемия. Подагра.
|
37.
| Биосинтез пуриновых и пиримидиновых нуклеотидов. Биосинтез дезоксирибонуклеотидов. Регуляция этих процессов.
|
38.
| Репликация ДНК: механизм и биологическое значение. Повреждение ДНК, репарация повреждений и ошибок репликации ДНК.
|
39.
| Типы РНК: особенности строения, размеры и разнообразие молекул, локализация в клетке, функции. Биосинтез РНК (транскрипция). Строение рибосом и полирибосом. Синтез аминоацил-тРНК. Субстратная специфичность аминоацил-тРНК-синтетаз.
|
40.
| Биологический код. Основные компоненты белоксинтезирующей системы. Биосинтез белка. Механизм. Адапторная функция тРНК и роль мРНК в этом процессе.
|
41.
| Регуляция биосинтеза белка. Индукция и репрессия синтеза белка на примере функционирования лактозного оперона кишечной палочки. Ингибиторы матричных биосинтезов: лекарственные препараты, вирусные и бактериальные токсины.
|
42.
| Гемоглобин. Строение. Синтез и распад гемоглобина. Формы билирубина. Пути выведения билирубина и других желчных пигментов. Желтухи.
|
43.
| Белковые фракции плазмы крови. Функции белков плазмы крови. Гипо- и гиперпротеинемия, причины этих состояний. Индивидуальные белки плазмы крови: транспортные белки, белки острой фазы.
|
44.
| Остаточный азот крови. Гиперазотемия, ее причины. Уремия.
|
45.
| Основные биохимические функции и особенности печени.
|
46.
| Взаимосвязь обмена жиров, углеводов и белков.
|
47.
| Биохимия регуляций. Основные принципы и значение. Иерархия регуляторных систем. Классификация межклеточных регуляторов. Центральная регуляция эндокринной системы: роль либеринов, статинов и тропинов.
|
48.
| Понятие о рецепторах. Механизм действия гормонов через внутриклеточные рецепторы и рецепторы плазматических мембран и вторые посредники (общая характеристика).
|
49.
| Инсулин. Строение, образование из проинсулина, метаболизм, регуляция секреции. Влияние на обмен веществ.
|
50.
| Сахарный диабет. Патогенез. Нарушения обмена веществ при сахарном диабете. Определение толерантности к глюкозе при диагностике сахарного диабета.
|
51.
| Соматотропный гормон, глюкагон и другие пептидные гормоны. Биологическое значение.
|
52.
| Гормоны коры надпочечников. Синтез, метаболизм, регуляция секреции. Глюкокортикостероиды, влияние на обмен веществ. Гипо- и гиперкортицизм.
|
53.
| Строение, синтез и метаболизм йодтиронинов. Влияние на обмен веществ. Гипо- и гипертиреозы: механизм возникновения и последствия.
|
54.
| Катехоламины. Синтез, депонирование и метаболизм катехоламинов. Механизм действия. Влияние на обмен веществ.
|
55.
| Функции воды в организме. Регуляция обмена воды антидиуретическим гормоном.
|
56.
| Функции минеральных веществ. Регуляция солевого обмена альдостероном и гормонами предсердий. Биохимические механизмы развития почечной гипертензии.
|
57.
| Регуляция обмена кальция и фосфора. Роль паратгормона и тиреокальцитонина. Витамин Д. Роль 1,25-дигидроксикальциферола в регуляции кальция и фосфатов. Рахит.
|
58.
| Гормоны, производные жирных кислот. Синтез. Функции.
|
59.
| Витамин А. Участие в обмене веществ, признаки авитаминоза.
|
60.
| Витамины Е, К и убихинон, их участие в обмене веществ.
|
61.
| Витамины В1 и В2, строение, участие в обмене веществ. Признаки авитаминозов.
|
62.
| Витамины В6 и РР, их строение, биологическая роль признаки авитаминозов.
|
63.
| Витамины С и Р, строение, роль. Цинга.
|
64.
| Биотин и пантотеновая кислота. Их роль в обмене веществ.
|
65.
| Фолиевая кислота и витамин В12, их биологическая роль.
|