Главная страница

лекции по микре. Первая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и


Скачать 1.22 Mb.
НазваниеПервая. Общая микробиология. Глава место микроорганизмов среди других живых существ классификация и
Анкорлекции по микре.doc
Дата18.05.2017
Размер1.22 Mb.
Формат файлаdoc
Имя файлалекции по микре.doc
ТипДокументы
#7841
страница6 из 24
1   2   3   4   5   6   7   8   9   ...   24
ГЛАВА 10. ГЕНЕТИКА МИКРООРГАНИЗМОВ

Организация генетического материала у бактерий. Генотип и фенотип

Материальной основой наследственности бактерий является ДНК. По сравнению с геном ом эукариотов геном бактерий устроен более просто - это молекула ДНК, замкнутая в кольцо, которое прикреплено к одной из мезосом. В отличие от парных хромосом эукариотов, у бак­терий одна хромосома, то есть гаплоидный набор генов, поэтому у них нет явления доминантности.

Кроме хромосомы, у бактерий имеются внехромосомные генети­ческие элементы - плазмиды. Это молекулы ДНК, которые или нахо­дятся вне хромосомы, в автономном состоянии, в виде колец, прик­репленных к мезосомам, или встроены в хромосому (интегрированное состояние). Плазмиды придают бактерии дополнительные наследс­твенные признаки, но не являются обязательными для нее. Плазмида может быть элиминирована (удалена) из бактерии, что не влияет на ее жизнеспособность.

В настоящее время известно свыше 20 типов плазмид у бактерий. Назовем некоторые из них :

F-плазмида, фактор фертильности (лат. fertilis - плодовитый), или половой фактор, определяет способность бактерий к образованию по­ловых ворсинок и к конъюгации.

R-плазмиды определяют резистентность бактерий к лекарственным средствам. Передача R-плазмид от одних бактерий к другим приводит к быстрому распространению лекарственноустойчивых бактерий.

Col-плазмиды кодируют синтез бактериоцинов - антибактериаль­ных веществ, вызывающих гибель других бактерий того же илиродственных видов. Впервые они были обнаружены у Escherichia соН,отсюда и их название - колицины. Известны бактериоцины стафи­лококков (стафилоцины), палочек чумы (пестицины) и других бакте­рий. Наличие плазмиды бактериоциногенности придает бактериям се­лективные преимущества в биоценозах. Это может иметь для организ­ма человека положительное значение, если колицины кишечной палоч­ки губительно действуют на патогенные энтеробактерии, и отрицатель­ное, если бактериоцины продуцируются патогенными микробами.

Ent-плазмиды определяют продукцию энтеротоксина. Н1у-плаз-мида - гемолитическую активность.

Дополнительными генетическими элементами являются также профаги - геномы умеренных фагов, которые, встраиваясь в хромосому бак­терии, могут придавать ей определенные свойства. Например, tox-гены, кодирующие образование экзотоксинов коринебактерий дифтерии, клостридий ботулизма и др.

Генотип - это общая сумма генов микроба. В отношении микро­организмов "генотип" означает то же, что "геном".

Фенотип - это весь комплекс свойств микроба, проявление генотипа в определенных, конкретных условиях существования.

Генотип - это возможные способности клетки, а фенотип - видимое их проявление.

Гены, ответственные за синтез какого-то соединения, обозначают строчными буквами латинского алфавита по названию соединения, например, при наличии гена, кодирующего синтез лейцина, - ieu+, при отсутствии - leu-. Гены, ответственные за резистентность к лекарствен­ным средствам, бактериофагам, ядам, обозначают буквой г (лат. resistentia), а чувствительные - буквой s (лат. sensitiv - чувствительный). Например, чувствительность к стрептомицину обозначают str5, резис­тентность strr. Фенотип бактерий обозначается теми же знаками, но с прописной буквы: соотвественно Leu+, Leir, Str1, Str8.

Изменчивость микроорганизмов

Наследственность - способность сохранения постоянства спе­цифических свойств организма на протяжении ряда поколений, то есть способность воспроизводить себе подобных.

Изменчивость - различие в свойствах между особями одного вида. Различают изменчивость наследственную и ненаследственную.

Ненаследственная или фенотипическая изменчивость (модифика­ции) не затрагивает геном микроба, не передается по наследству. Мо­дификации возникают в ответ на изменяющиеся условия окружающей среды. При устранении фактора, вызвавшего модификацию, измене­ние исчезает. Например, кишечная палочка только в присутствии лактозы продуцирует ферменты, разлагающие этот углевод. Стафило­кокки образуют фермент, разрушающий пенициллин, только в присут­ствии этого антибиотика. Примером модификаций является также образование L-форм бактерий под действием пенициллина и возврат к исходной форме после прекращения его действия.

Наследственная или генотипическая изменчивость возникает в ре­зультате изменения самого генома. Изменение генома может наступить в результате мутаций или рекомбинаций.

Мутации (лат. mutatio - изменение) - изменение последовательности нуклеотидов в молекуле ДНК, в результате которого происходит появ­ление или потеря признака. Таким признаком может быть способность синтезировать какую-либо аминокислоту или резистентность к анти­биотику.

По происхождению мутации могут быть спонтанными или индуци­рованными. Индуцированные мутации получают в эксперименте под влиянием мутагенов: радиации, некоторых химических веществ. Спон­танные мутации возникают под влиянием естественных факторов. Ча­стота спонтанных мутаций невелика, в среднем 1 на 10 млн. Образовавшиеся микробы называют мутантами. Если возникшая мута­ция выгодна для микроба и создает для него преимущества в определен­ных условиях среды, то мутанты выживают и дают многочисленное потомство. Если же мутация не создает преимуществ, мутанты поги­бают.

Мутации микроорганизмов могут иметь важное практическое зна­чение. Получены штаммы-мутанты грибов и актиномицетов, являю­щиеся продуцентами антибиотиков во много раз более активных, чем исходные культуры. Из мутантов с ослабленной вирулентностью мо­гут быть получены вакцинные штаммы для получения живых вакцин.

Диссоциация бактерий (лат. dissociatio - расщепление) - одно из про­явлений мутаций. В популяции микроорганизмов появляются особи, вырастающие при посеве на плотную питательную среду в виде глад­ких S-форм и шероховатых R-форм колоний (англ, smooth - гладкий, rough - шероховатый). S-формы колоний - круглые, влажные, с глад­кой блестящей поверхностью, с ровными краями. R-формы колоний неправильной формы, сухие, с изрезанными краями и шероховатой поверхностью.

Процесс диссоциации, то есть расщепления особей в популяции, обычно протекает в одном направлении: от S- к R-форме, иногда через промежуточные формы. У большинства видов бактерий вирулентны­ми являются S-формы. Исключение составляют возбудители,чумы, си­бирской язвы, туберкулеза.

Генетические рекомбинации

Генетические рекомбинации - (лат. recombinatio - перестановка) у бак­терий - это передача генетического материала (ДНК) от клетки-донора к клетке-реципиенту, в результате появляются рекомбинанты с новыми свойствами.

Известны три типа генетичес­ких рекомбинаций: трансформа­ция, трансдукция, конъюгация (рис.11, табл. 2).

Трансформация (лат. transforma-tio - превращение) - передача ДНК в виде свободного растворимого ве­щества, выделенного из клетки до­нора, в клетку реципиента. При этом рекомбинация происходит, если ДНК донора и реципиента родствен­ны друг другу, и может произойти обмен гомологичных участков сво­ей и проникшей извне ДНК. Впер­вые явление трансформации открыл Ф. Гриффите в 1928 г. Он ввел мы­шам живой невирулентный бескап-

сульный штамм пневмококка и одновременно убитый вирулентный кап-сульный штамм пневмококка Мыши погибли, из их крови была выделе­на живая культура вирулентного капсульного пневмококка Сам Гриф­фите считал, что трансформация произошла путем поглощения невиру­лентным пневмококком капсульного вещества вирулентного штамма Позже, в 1944 г О Эвери, К Мак Леод и М Мак-Карти доказали, что трансформирующее вещество - это ДНК, которая является носителем генетической информации Гак впервые была доказана роль ДНК как материального субстрата наследственности

Трансдукция (лат transductio - перенос) - передача ДНК от бакте­рии-донора к бактерии-реципиенту с помощью бактериофага Разли­чают неспецифическую трансдукцию, специфическую и абортивную

При неспецифической трансдукции может быть перенесен любой фрагмент ДНК донора При этом ДНК донора попадает в головку бак­териофага, не включаясь в его геном Принесенный бактериофагом фрагмент ДНК донора может включиться в хромосому реципиента Та­ким образом, бактериофаг в этом случае является только переносчиком ДНК, сама фаговая ДНК не участвует в образовании рекомбинанта

При специфической трансдукции гены хромосомы донора замеща­ют собою некторые гены бактериофага В клетке реципиента фаговая ДНК вместе с фрагментом хромосомы донора включается в строго оп­ределенные участки хромосомы реципиента в виде профага Реципи­ент становится лизогенным и приобретает новые свойства

Трансдукция называется абортивной, если фрагмент ДНК, при­несенный бактериофагом, не вступает в рекомбинацию с хромосомой реципиента, а остается в цитоплазме и может кодировать синтез како­го-то вещества, но не реплцируется при делении, передается только одной из двух дочерних клеток и затем утрачивается.

Конъюгация (лат. conjugatio - соединение) - это переход ДНК из клетки-донора ("мужской") в клетку-реципиент ("женскую") через по­ловые пили при контакте клеток между собой. Донором является "муж­ская" клетка (F+-клетка), она содержит F-фактор - половой фактор, который кодирует образование половых пилей. Клетки, не содержа­щие F-фактора (F--клетки), являются женскими. При конъюгации клет­ки-доноры соединяются с клетками-реципиентами с помощью F-пилей, через которые происходит переход ДНК. Если клетка-реципиент полу­чает F-фактор, она становится "мужской" F+-клеткой.

Если F-фактор включен в хромосому, то бактерии способны пе­редавать фрагменты хромосомы и называются Hfr-клетками (англ, high frequency of recombination - высокая частота рекомбинации). При конъ­югации хромосома разрывается в месте нахождения F-фактора и реплицируется, причем одна нить ДНК передается в клетку реципиента, а ко­пия остается в клетке донора. F-фактор включается в хромосому в опре­деленном ее участке, поэтому перенос отдельных генов хромосомы со­вершается в строго определенное время. Таким образом, прерывая про­цесс конъюгации через разные промежутки времени путем встряхива­ния взвеси бактерий, можно выяснить, какие признаки передаются за это время. Это позволяет построить карту хромосомы, то есть последо­вательность расположения генов в хромосоме. Перенос всей хромосомы может длиться до 100 минут. F-фактор при этом переносится последним.

Особенности генетики вирусов

Модификации. Ненаследуемые изменения у многих вирусов про­исходят в результате включения в состав их внешней оболочки липидов и углеводов клеток хозяина, в которых вирус репродуцируется.

Мутации. Спонтанные мутации возникают в результате ошибок при репликации генома вируса. Индуцированные мутации происхо­дят под действием мутагенов. Одни из них (азотистая кислота) влияют на внеклеточный вирион, другие (акридин, аналоги азотистых осно­ваний) - на процесс репликации вирусной нуклеиновой кислоты в клет­ке. Мутанты отличаются от исходных вирусов по строению и величине бляшек, которые они образуют в культуре клеток, по антигенам, по чувствительности к температуре.

Рекомбинации. При одновременном паразитировании двух виру­сов в одной клетке хозяина возможен обмен генетическим материалом между ними. В результате генетической рекомбинации происходит об­мен участками HK между разными вирусами, и образуются рекомбинанты, обладающие генами двух исходных вирусов. Вирус гриппа имеет геном, состоящий из восьми фрагментов РНК. При одновремен­ной репродукции в одной клетке двух разных вирусов гриппа между ними может происходить обмен генами. Образовавшинеся рекомби-нанты будут представлять собой новый тип вируса гриппа.

При одновременном паразитировании двух видов вируса в одной клетке в момент формирования зрелых вирионов возможно фенотипическое смешивание, когда геном одного вируса одевается капсидом другого вируса (феномен транскапсидации). Так, например, известны случаи, когда геном вируса иммунодефицита человека (ВИЧ) оказыва­ется включенным в белковый капсид другого вируса. В результате та­кой вирус приобретает способность поражать такие виды клеток, ко­торые были нечувствительны к исходному вирусу.

Практическое значение учения о генетике микробов

При микробиологической диагностике инфекционных заболева­ний возникают затруднения в определении вида атипичных микробов, например, бактерий дизентерии, не агглютинирующихся сыворотка­ми. Для их идентификации приходится применять другие методы.

В процессе лечения больных инфекционными болезнями создают­ся препятствия в виде устойчивости возбудителей к антибиотикам, и требуются специальные методы для преодоления лекарственной ус­тойчивости. Селекция в условиях стационаров штаммов микроорга­низмов, обладающих множественной лекарственной устойчивостью и высокой вирулентностью для человека, привело к формированию так называемых «госпитальных» штаммов, вызывающих внутрибольничныс инфекции. Такие штаммы известны среди стафилококков, а также среди сальмонелл и других грамотрицательных палочек.

Методами направленной мутации и селекции получены живые вак­цины, с успехом применяющиеся для профилактики инфекционных бо­лезней.

Достижения молекулярной генетики используются для современ­ных методов идентификации микробов: методы индикации нуклеино­вых кислот, полимеразная цепная реакция (ПЦР). Полимеразная цеп­ная реакция является высокочувствительной реакцией, т.к. позволяет увеличить число копий исследуемой цепи ДНК в сотни тысяч раз за несколько часов. ПЦР может быть использована особенно тогда, ког­да в исследуемом материале имеется очень малые концентрации воз­будителя или трудно выделить чистую культуру, а также при его высо­кой антигенной изменчивости.

Генетическая инженерия

Генетическая инженерия основана на создании рекомбинантных организмов, содержащих встроенные в их хромосому гены, кодирую­щие продукцию необходимых для производства соединений.

Последовательные этапы рекомбинации:

1) получение ДНК. Участки ДНК, то есть гены, кодирующие син­тез необходимого вещества, выделяют из хромосомы путем разреза­ния ферментами (рестриктазами). В некоторых случаях удается по­лучить методом химического синтеза небольшие гены, аналогичные природным;

2) полученный ген (отрезок ДНК) с помощью ферментов (лигаз) соединяют ("сшивают") с другим отрезком ДНК, который будет слу­жить вектором для встраивания гибридного гена в клетку. В качестве вектора можно использовать плазмиды, бактериофаги, вирусы;

3) вектор, несущий встроенный в него ген, встраивается в бакте­риальную или животную клетку, которая приобретает способность продуцировать не свойственное этой клетке вещество. В качестве та­ких реципиентов используют клетки Е. coli, P. aeruginosa, дрожжи, ви­рус осповакцины. Подбирая подходящего реципиента, учитывают вы­раженность синтеза необходимого вещества. Некоторые штаммы бак­терий, получивших чужой ген, способны переключать половину свое­го потенциала на синтез соединения, кодируемого этим геном. Учиты­вается также возможность секреции вещества в окружающую среду, возможность культивирования в промышленных масштабах, экологи­ческая безопасность.

Биологические препараты, полученные методом генетической инжене­рии: интерфероны, интерлейкины, инсулин, гормон роста, вакцина про­тив гепатита В, антигены ВИЧ для диагностики и другие препараты.

Методы генетической инженерии перспективны:

- для получения антигенов с целью диагностики заболеваний, воз­будители которых или не культивируются на питательных средах (си­филис, малярия) или опасны для культивирования;

- для получения препаратов, сырье для которых дорогостоящее или дефицитное: интерфероны, инсулин, гормон роста, интерлейкины и дру­гие цитокины, регулирующие иммунитет, а также антитела.

ГЛАВА И. АНТИБИОТИКИ

По современной классификации, термин «антибиотики» объедин­яет все лекарственные препараты, избирательно подавляющие мик­роорганизмы и не повреждающие органы и клетки человека. Их раз­деляют на следующие группы:

а) природные - продуцируемые живыми организмами;

б) полусинтетические - полученные в результате модификации структуры природных антибиотиков;

в) синтетические - полученные методом синтеза (прежнее их на­звание - химиотерапевтические средства).

Исторически сложилось так, что вначале были получены синте­тические препараты, получившие название химиотерапевтических, а лечение этими препаратами - химиотерапии. Основоположником хими­отерапии является немецкий химик Пауль Эрлих (1854-1915), который установил возможность создания химических соединений, изби­рательно действующих на определенные виды микробов. Первыми химиотерапевтическими средствами, синтезированными Эрлихом, были

сальварсан и неосальварсан, обладающие противосифилитическим действием. Эрлих сформулировал основные положения химиотерапии, понятие об этиотропном лечении (греч. aitia - причина), направленном против возбудителей заболевания, а также впервые обнаружил явле­ние лекарственной устойчивости микробов.

В 1932 г. Г. Домагк синтезировал первый сульфаниламидный пре­парат - стрептоцид. В дальнейшем были получены препараты биоло­гического происхождения, по своей антимикробной активности на не­сколько порядков превосходящие синтетические препараты. Их дей­ствие основано на антагонизме микробов. Чаще всего антагонизм на­блюдается среди почвенных микробов. Еще в 1887 г. Л. Пастер обна­ружил подавление роста бацилл сибирской язвы гнилостными бакте­риями при совместном их выращивании. Идея об антагонизме микро­бов нашла практическое применение в трудах И.И. Мечникова, пред­ложившего использовать антагонистическое действие молочнокислых бактерий на гнилостные микробы кишечника и путем введения лакто-бактерий изменять кишечную флору. Идея И.И. Мечникова о возмож­ности и целесообразности направленного изменения кишечной мик­рофлоры и об использовании с этой целью микробов-антагонистов лежит в основе бактериотераиии (лечения живыми микробами) п со­временного учения об антибиотиках.

В 1929 г. английский микробиолог А. Флеминг обнаружил на чаш­ках Петри лизис колоний золотистого стафилококка вблизи плесени Penicillium notatum и показал, что фильтрат бульонной культуры этой плесени обладал антибактериальным действием в отношении грампо-ложительных бактерий. Однако препарат пенициллина получили лишь в 1941 г. Г.У. Флори и Э. Чейн. В Советском Союзе пенициллин был получен З.В. Ермольевой в 1942 г. из плесени Penicillium crustosum.

Вслед за получением пенициллина начались и продолжаются в на­стоящее время широкие поиски новых антибиотических веществ природ­ного происхождения и получение высокоактивных синтетических препа­ратов. Синтезированные в последнее время фторхинолоны по своей ак­тивности приближаются к антибиотикам природного происхождения.

Для оценки пригодности антибиотика к применению служит химиотерапевтический индекс. Величина индекса определяется по формуле:
Максимально переносимая доза (Dosis tolerantia)

ХТИ = -------------------------------------------------------------

Минимальная терапевтическая доза (Dosis curavita)

ХТИ должен быть не менее 3.

Природные и полусинтетические антибиотики

Природные антибиотики продуцируются живыми организмами (продуцентами). В зависимости от источника получения различают не­сколько групп природных антибиотиков:

1) антибиотики, продуцентами которых являются микроскопические грибы: пенициллин, цефалоспорин, фузидин, гризеофульвин;

2) антибиотики, полученные из актиномицетов: стрептомицин, тетрациклины, неомицин, эритромицин и другие;

3) антибиотики, полученные из бактерий: полимиксины;

4) антибиотики, полученные из животных тканей: люоцим (из бел­ка куриного яйца), интерферон (продуцируется донорскими лей­коцитами), эктерицид (из рыбьего жира);

5) антибиотики, полученные из растений (фитонциды): хлорофиллипт - из эвкалипта, сальвин - из шалфея.

Полусинтетические антибиотики получают путем модификации структуры природных антибиотиков, с целью придания препарату новых полезных свойств. Так, природный пенициллин имеет недостат­ки: быстро выводится из организма, разрушается в желудочно-ки­шечном тракте, имеет узкий спектр действия, разрушается бета-лакта-мазой - ферментом, выделяемым устойчивыми к пенициллину бактери­ями. Получены полусинтетические препараты пенициллина: 1) устой­чивые к действию бета-лактамазы (оксациллин); 2) устойчивые к дей­ствию желудочного сока (феноксиметилпенициллин); 3) пенициллины широкого спектра действия (амнициллин, амоксициллин, карбенициллин); 4) пенициллины пролонгированного действия (бициллины).

Получен целый ряд полусинтетических цефалоспоринов.

Химиотерапевтические средства (синтетические антибиотики)

К антимикробным препаратам, полученным методом синтеза, от­носятся:

сульфаниламиды: сульфадимезин, уросульфан, сульфазин, фта­лазол, сульгин, сульфадиметоксин и другие;

- комбинированные препараты сульфаниламидов с триметопримом: бактрим (бисептол), сульфатон;производные нитроимидазола: метрони-дазол (трихопол);

- производные нитрофурана (фурацилин, фурадонин, фурагин);

- хинолины (производные 8-оксихинолина): нитроксолин (5-НОК);

- хинолоны I поколения: налидиксовая кислота (невиграмон), пипемидиновая кислота (полин);

хинолоны II поколения (фторхинолоны): ципрофлоксацин (ципробай), офлоксацин, перфлоксацин, норфлоксацин.

Аналогами природных антибиотиков являются синтетические пре­параты: левомицетин, циклосерин.

По химическому составу антибиотики подразделяют на несколько групп.

1) бета-лактамные антибиотики - гетероциклические соединения с бета-лактамным кольцом. К этой группе относятся пенициллины и цефалоспорины.

2) Тетрациклины: окситетрациклин, хлортетрациклин, доксицик-

лин, метациклин, вибромицин, морфоциклин. Содержат четыре бен­зольных кольца с радикалами.

3) Аминогликозиды. К ним относится группа стрептомицина и его производные: неомицин, канамицин. Аминогликозиды II поколения: тобрамицин, сизомицин; III поколения: нетилмицин, амнкацин.

4) Полипептиды - полимиксин.

5) Макролиды - соединения, содержащие макроциклическое лак-тонное кольцо: эритромицин, азитромицин (сумамед).

6) Анзамицины - рифампицин.

7) Полиеновые антибиотики - нистатин, леворин, амфотерицин В, имеющие двойные связи СН=СН.

Спектр активности антибиотиков

Спектр активности - это перечень видов микробов, на которые пре­парат оказывает действие. Принято делить антибиотики по спектру активности в зависимости от того, на какие микробы они действуют: антибактериальные, противогрибковые, противовирусные, противо­опухолевые. При этом различают антибиотики широкого и узкого спек­тра действия.

Антибактериальные антибиотики. Сюда относится большинство пре­паратов. К антибиотикам узкого спектра активности относится бен-зилпенициллин, который оказывает действие на гноеродные кокки, не­которые грамположительные палочки и на спирохеты. Полимиксин действует только на грамотрицательные бактерии.

Антибиотики широкого спектра действия активны в отношении многих грамположительных и грамотрицательных бактерий, а некото­рые из них - также в отношении риккетсий, хламидий, микоплазм. К антибиотикам широкого спектра действия относятся тетрациклины, левомицетин, аминогликозиды, макролиды.

Противогрибковые антибиотики. Это леворин, гризеофульвин. Ши­роким спектром действия обладает амфотерицин В, активный при мно­гих микозах, в том числе глубоких. Нистатин - антибиотик узкого спек­тра действия, активен в отношении грибов рода Кандида.

Противовирусный природный антибиотик животного происхожде­ния - интерферон. Это низкомолекулярный белок, образуется в клет­ках организма или в культуре клеток под действием индукторов инерферона и является одним из факторов неспецифнческой противо­вирусной защиты. Индукторами могут быть не только вирусы, но и бактерии, ЛПС бактерий, некоторые лекарственные средства. В нача­ле изучения интерферона было открыто его противовирусное действие, в дальнейшем было обнаружено несколько типов интерферонов и мно­гообразное их действие: противовирусное, противоопухолевое, иммуномодулирующее, радиопротекторное. Интерферон неспецифичен в от­ношении вида вируса, но обладает видовой специфичностью. Поэто­му для лечения человека эффективен интерферон, выделяемый культурой человеческих клеток. Интерферон не оказывает непосредственно­го действия на вирус, но подавляет синтез вирусных белков в клетке и таким образом препятствует образованию вирионов. Известно несколь­ко типов интерферона, из которых в качестве противовирусного сред­ства применяется лейкоцитарный а-интерферон.

С помощью методов генетической инженерии получен рекомби-нантный интерферон - реаферон.

Противоопухолевые антибиотики задерживают размножение или оказывают цитотоксическое действие на опухолевые и быстроразмножающиеся нормальные клетки организма, подавляя синтез нуклеи­новых кислот или белка. Это митомицин С, рубомицин, оливомицин и многие другие, применяющиеся при определенных видах опухолей.

Активность каждого антибиотика определяется по его действию на соответствующий тест-микроб. За единицу активности (ЕД) для боль­шинства антибиотиков принимают специфическую активность, со­держащуюся в 1 мкг чистого вещества. Для пенициллина 1 мкг = 1,67 БД, для нистатина 1 мкг = 4 ЕД.

Типы и механизмы действия

Различают бактерицидное и бактериостатическое действие:

- бактериостатическое (лат. stasis - стояние) - задержка роста бак­терий;

- бактерицидное (лат. caedere - убивать) - губительное действие на бактерии.

Бактериостатическое действие обнаруживается по его обрати­мости: после пересева бактерий в свежую питательную среду без пре­парата наблюдается рост бактерий. При бактерицидном действии пе­ресев на свежую среду не дает роста.

Тот или иной тип действия зависит от характера препарата и от дозы. Как правило, при малых дозах препарата наблюдается бак­териостатическое действие, при больших - бактерицидное. Но есть ис­ключения. Например, налидиксовая кислота в малых дозах повреж­дает ДНК и таким образом оказывает бактерицидное действие, а в больших дозах повреждает РНК, вызывает нарушение биосинтеза бел­ка, что ведет к бактериостатическому действию. Большинство анти­биотиков обладает бактерицидной активностью. Преимущественно бактериостатическое действие оказывают тетрациклины, левомицетин, макролиды.

По механизму действия различают следующие группы антибиоти­ков:

1) антибиотики, подавляющие синтез клеточной стенки бактерий: пенициллин, цефалоспорины, циклосерин. Пенициллин нарушает про­цесс образования полимерного соединения - пептидогликана, поэтому действует на молодые растущие клетки бактерий. Поскольку клетки человеческого организма не содержат пептидогликана, пеницилин не повреждает их;

2) антибиотики, нарушающие функции цитоплазматической мемб­раны: полимиксины, а также полиеновые противогрибковые антибио­тики: нистатин, леворин, амфотерицин В. Полиеновые антибиотики адсорбируются на цитоплзматической мембране, взаимодействуют со стерольным компонентом, повышают проницаемость мембраны, что приводит к нарушению водно-солевого обмена клетки и к ее гибели. У бактерий и риккетсий в мембране нет стеролов, поэтому эти мик­роорганизмы нечувствительны к полиеновым антибиотикам;

3) антибиотики, ингибирующие синтез белка на рибосомах бак­териальных клеток: аминогликозиды, тетрациклины, левомицетин, мак­ролиды. Перечисленные антибиотики блокируют рибосомы бакте­риальной клетки и не оказывают действия на рибосомы клеток чело­века вследствие различий в структуре и молекулярной массе рибосом прокариотов и эукариотов.

4) антибиотики, ингибирующие РНК-полпмеразы - рифампицин, подавляющий синтез РНК на матрице ДНК;

5) антибиотики, вызывающие лизис клеточной стенки бактерий - лизоцим.

Механизм действия многих химиотерапевтических препаратов свя­зан с тем, что они являются антиметаболитами, то есть структурными аналогами важнейших метаболитов, участвующих в обмене веществ бактерий. Будучи сходными с метаболитом, они вытесняют его из об­менного процесса, но не обеспечивают нормального его течения. Так, сульфаниламиды являются структурными аналогами парааминобензойной кислоты (ПАБК) - кофермента фолпевой кислоты. Норсульфазол - аналог тиамина (витамина В1). Противотуберкулез­ные препараты - гидразиды изоникотиновой кислоты (ГИНК) - анало­ги изоникотиновой кислоты.

Иной механизм действия производных нитрофурана, которые на­рушают процесс биологического окисления микробов. Особенно высо­кой активностью обладают фторхинолоновые препараты, которые по­давляют синтез ДНК микробов.

Мишенями действия противовирусных препаратов являются ка­кие-либо этапы репродукции вируса в клетке хозяина. Так, ремантадин повреждает процесс депротеинизации - "раздевания" вируса, а также биосинтез вирусного белка на рибосомах клетки. Ингибиторы проте-аз (е-аминокапроновая кислота) нарушает процесс расщепления бел­ка вируса гриппа, препятствуя таким образом репликации вируса. Рибавирин (виразол), будучи структурным аналогом пуриновых основа­ний, нарушает репликацию вирусных нуклеиновых кислот. Азидоти-мидин подавляет процесс обратной транскрипции, присущий ретро-вирусам, к которым относится вирус иммунодефицита человека (ВИЧ).

Побочные явления при антибиотикотерапии

К настоящему времени получено несколько тысяч антибиотиков, но для лечения больных применяется только несколько десятков, так как многие антибиотики оказывают вредное воздействие на организм. И даже те, которые нашли практическое применение, не лишены неже­лательных реакций. Различают следующие виды побочных действий антибиотиков.

1) Прямое токсическое действие: стрептомицин оказывает ток­сическое действие на почки и на слуховой нерв; тетрациклин вызы­вает поражение печени, задержку развития костей и зубов; левомицетин подавляет процесс кроветворения, а также отрицательно влияет на внугриутробное развитие гшода.

2) Обострение течения болезни, повышение температуры, так на­зываемая лихорадка Герца-Геймера, как следствие освобождения сразу большого количества эндотоксинов из разрушенных бактерий.

3) Аллергические реакции вызывают пенициллин, цефалоспори-ны, стрептомицин и др. У людей с повышенной чувствительностью к этим препаратам при их введении могут возникнуть такие явления, как сыпь, зуд, крапивница, в тяжелых случаях - анафилактический шок, который требует оказания немедленной медицинской помощи. Koнтактный дерматит может развиваться как профессиональная болезнь на предприятиях, изготовляющих антибиотики.

4) Дисбактериоз - нарушение состава нормальной микрофлоры организма. Возникает при лечении больного антибиотиками широко­го спектра действия, которые подавляют рост не только возбудителей болезни, но и представителей нормальной микрофлоры организма. Следствием этого может быть гиповитаминоз. Кроме того, вследствие дисбактериоза могут развиваться вторичные инфекции, вызванные грибами или бактериями, размножение которых подавлялось мик­робами-антагонистами. Например, грибы рода Кандида, нечувстви­тельные к антибактериальным препаратам, при гибели микробов-ан­тагонистов начинают безудержно размножаться и вызывают вторич­ную инфекцию - кандидоз. Вторичные инфекции вызывают также бак­терии, которые быстро приобретают устойчивость к антибиотикам, например, стафилококки.

5) Угнетение образования антител может наблюдаться по двум причинам. Во-первых, при лечении антибиотиками возбудитель гиб­нет в самом начале болезни, поэтому организм не формирует иммун­ный ответ. Это наблюдается, например, при лечении левомицетином больных брюшным тифом и при лечении пенициллином больных скарлатиной. Поэтому рекомендуется сочетать лечение антибиотика­ми со средствами, стимулирующими иммунитет. Во-вторых, некоторые антибиотики, в частности, левомицетин, угнетают биосинтез белка и, следовательно, образование антител.

Лекарственная устойчивость микробов

Под устойчивостью микробов к антибактериальному препарату понимают сохранение способности размножаться при таких концент­рациях этого препарата, которые создаются при введении в организм

терапевтических доз.

Типы антибиотикоустойчивости:

1) природная, свойственная данному виду микробов;

2) приобретенная: а) первичная; б) вторичная.

1) Природная устойчивость обусловлена свойствами данного ви­да микробов и механизмом действия антибиотика Например, устой­чивость грамотрицательных палочек к бензилпенициллину или грибов - к антибактериальным препаратам.

2) Приобретенная устойчивость. Устойчивость называют приоб­ретенной в тех случаях, когда появляются варианты устойчивых мик­робов, принадлежащих к виду, по природе своей чувствительному к данному антибиотику. Например, появление стафилококков, устой­чивых к пенициллину.

Первичной называют устойчивость, которая обнаруживается с са­мого начала болезни, так как произошло заражение антибиотикоустойчивым возбудителем. Вторичная устойчивость развивается в те­чение болезни.

Генетические механизмы антибиотикорезистентности: 1) хромосомная и 2) плазмидная.

1) Хромосомная антибиотикорезистентность. В популяции чувс­твительных бактерий появляются единичные клетки-мутанты, устой­чивые к данному антибиотику, причем это происходит не под дейс­твием антибиотика Обычно мутанты в отсутствие антибиотика че­рез какое-то время погибают. Если же популяция подвергается дей­ствию антибиотика, то чувствительные бактерии погибают, а устой­чивые выживают и дают начало резистентной популяции, то есть происходит селекция.

2) Плазмидная антибиотикорезистентность связана с R-плазмидами. Это обычно множественная устойчивость, сразу к нескольким антибиотикам. R-плазмиды могут передаваться бактериям тогЪ же вида или другого вида или даже рода. Например, дизентерийные бактерии могут стать устойчивыми к нескольким антибиотикам, получив R-плазмиду от дизентерийных или от кишечных палочек путем рекомбинации.

Фенотипические проявления антибиотикорезистентности. Устой­чивость бактерий к антибиотикам реализуется за счет следующих ме­ханизмов:

1) образование специфических ферментов, разрушающих данный антибиотик. Так фермент р-лактамаза разрушает р-лактамное кольцо пенициллинов и цефалоспоринов. Этот фермент продуцируют стафило­кокки с приобретенной резистентностью к пенициллину. Устойчивость к левомицетину и аминогликозидам связана с продукцией ферментов трансфераз;

2) снижение проницаемости клеточной стенки для данного анти­биотика, например, для тетрациклина, или нарушение транспортного механизма цитоплазмагической мембраны;

3) формирование обходного пути метаболизма взамен поврежден­ного антибиотиком;

4) изменение структуры мишени действия антибиотика;

5) превращение бактерий в L-формы, лишенные клеточной стен­ки, но способные к реверсии, то есть к обратному превращению в обыч­ные формы.

Устойчивость микробов к антибиотикам в клинике имеет важное значение, так как снижает эффективность лечения. Само по себе воз­никновение хромосомных мутаций и R-плазмид не связано с открытием антибиотиков и внедрением их в практику. Но антибиотики играют роль фактора отбора устойчивых микробов. Поэтому бесконтрольное, неоправданное, без соответствующих показаний, применение антиби­отиков способствует массовой селекции и распространению антибиотикорезистентных бактерий. Кроме того, этому способствует примене­ние антибиотиков в животноводстве и птицеводстве с целью ускоре­ния роста животных и птиц.

Преодоление и предупреждение развития лекарственной устойчивос­ти. Для ограничения распространения лекарственноустойчивых бак­терий и повышения эффективности лечения применяются следующие меры:

- получение новых антибиотиков с иным механизмом действия;

- лечение больных с учетом чувствительности возбудителей к ан­тибиотикам;

- применение для лечения сочетания антибиотиков с разным меха­низмом действия;

- применение антибиотиков только при наличии соотвествующих показаний;

- использование в животноводстве и птицеводстве только таких антибиотиков, которые в медицине не применяются;

- для подавления действия продуцируемых бактериями ферментов, разрушающих антибиотики, используются ингибиторы ферментов. Так, клавулановая кислота и клавуланаты, а также сульбактам ингибируют фермент р-лактамазу. Рекомендуется применять ингибиторы вместе с антибиотиком против возбудителя, устойчивого к антибиотику. На­пример, амоксициллин + клавуланат (препарат аугментин), ампициллин + сульбактам (уназин).

Определение чувствительности микробов к антибиотикам

Существует несколько методов: метод серийных разведении, ме­тод стандартных дисков, ускоренные методы. При этом материал от больного должен быть взят до начала лечения антибиотиками.

Метод стандартных дисков (метод диффузии в агар) - наиболее про­стой и широко применяемый. Это качественный метод, позволяющий определить, к каким антибиотикам чувствителен микроб, выделенный от больного. Испытуемую культуру засевают сплошным газоном на

чашку с питательным агаром. Затем на поверхность агара помещают бумажные диски, пропитанные антибиотиками. После суточного ин-кубирования в термостате измеряют диаметр зон задержки роста вок­руг каждого диска и по таблице проводят оценку результата.

Определение проводят с чистыми культурами бактерий. Однако в некоторых случаях для быстрого получения ориентировочных ре­зультатов используют непосредственно патологический материал.

Метод серийных разведении является более точным, количест­венным, так как позволяет определить не только антибиотики, к кото­рым чувствителен микроб, но и минимальную подавляющую кон­центрацию (МПК) антибиотика. Для проведения исследования необхо­дима чистая культура испытуемого микроба.

Метод серийных разведении в жидкой питательной среде. В ряду пробирок с жидкой питательной средой готовят последовательные раз­ведения антибиотика. Контролем служит пробирка с питательной сре­дой без антибиотика. Затем в каждую пробирку засевают определенное количество испытуемых микробов. После суточного инкубирования в термостате учитывают результат: отмечают последнюю пробирку с полной задержкой роста. Концентрация антибиотика в этой пробирке является МПК.

Метод серийных разведении на плотной питательной среде. В про­бирках с расплавленной агаровой питательной средой готовят после­довательные разведения антибиотика, затем выливают в чашки. Пос­ле застывания агара производят посев испытуемых микробов (по од­ной петле из разведения 107 микробных тел в 1 мл). На каждую чашку можно засеять до 20 культур. Контролем служит чашка с питательной средой без антибиотика. После суточного инкубирования в термоста­те учитывают результат по последней чашке с задержкой роста.
1   2   3   4   5   6   7   8   9   ...   24


написать администратору сайта