Главная страница

Первый билет


Скачать 2.86 Mb.
НазваниеПервый билет
Дата14.02.2023
Размер2.86 Mb.
Формат файлаdocx
Имя файлаElektronika_shpora.docx
ТипДокументы
#937160
страница9 из 16
1   ...   5   6   7   8   9   10   11   12   ...   16

Девятый билет

9. Электрический и тепловой пробой в контактах и структурах.


Пробоемназывается резкое возрастание тока в диэлектрике или обеднённом полупроводнике при достижении напряжения на таких слоях

значения напряженияпробояUпр [2, 3, 6]. В допробойном состоянии, при |U| < |Uпр|, ток ничтожен, так как создаётся движением ничтожного количества подвижных носителей.

Электрический пробой диэлектрического или обеднённого слоя возникает при превышении в нём напряжённости поля некоторой критической напряжённости Екр. При этом напряжение не обязательно большое, так как напряженность поля Е ≈ U/w будет большой и при малых напряжениях, если мала толщина слоя w.

Типичным электрическим пробоем является лавинныйпробой. При таком пробое сильное электрическое поле разгоняет свободные электроны до столь значительной скорости, что их кинетической энергии при соударениях с атомами диэлектрика или обеднённого полупроводника хватает для превращения валентных электронов атомов в свободные. Появляются новые свободные электроны, которые также разгоняются электрическим полем и соударяются с атомами. Концентрация свободных электронов и ток резко возрастают.

Лавинный пробой считается обратимым, так как он исчезает при уменьшении напряжения на обеднённом слое.

Тепловой пробой возникает, как правило, вслед за лавинным. Возросший при лавинном пробое ток увеличивает количество выделяющегося тепла, температура материала возрастает. В результате (если отводимая от материала мощность меньше рассеиваемой) усиливается термогенерация подвижных носителей, растёт их концентрация, ток становится ещё больше, температура ещё выше и т.д. Перегрев слоя приводит к его разрушению, поэтому тепловой пробой считается необратимым.

При лавинном пробое исчезает главное полезное свойство диэлектрического или обеднённого слоёв низкая электропроводность, при тепловом эти слои вообще разрушаются.

24. Частотные свойства МДП и биполярных транзисторов. Частотные характеристики.


Частотные свойства характеризуют способность транзисторов обеспечивать усиление аналоговых сигналовна различных частотах. Такие сигналы, в отличие от цифровых (дискретных) сигналов, чаще отображаются функциями частоты, а не функциями времени. Частотные свойства транзисторов обычно описываются их амплитудно-частотнымиили фазо-частотнымихарактеристиками(АЧХ или ФЧХ).

В качестве простейших усилителей на МДП и биполярных транзисторах можно рассматривать схемы на рис.

43. Принципиальным отличием аналоговых усилителей от ключей является использование активного (усилительного) режима, а не режимов отсечки и насыщения. Такой режим в рассматриваемых схемах способен обеспечивать входной источник. Создаваемое им входное напряжение должно содержать постоянную (режимную) составляющуюнапряжения на затворе или базе, необходимую для поддержания открытого состояния транзистора.

Частотные свойства МДП транзисторов принято описывать частотной характеристикой комплекснойкрутизны S:

S = Iс / Uзи = S0 / (1 + jω/ωs ), (47) где S0 крутизна при ω = 0, ωs предельнаячастотакрутизны.

Из (47) можно получить выражения для модуля и фазы комплексной крутизны, т.е. для АЧХ и ФЧХ:

|S| = S0 / (1 + [ω/ωs]2)1/2, (48) φ = - arctg ω/ωs (49)

Согласно (48), при ω = ωs, |S| = S0 /√2. В графическом виде АЧХ и ФЧХ МДП транзистора изображены на рис. 46а.



а) б)

Рис. 46

ωs даёт преувеличенное представление о частотных возможностях МДП транзистора. На самом деле его коэффициенты усиления по напряжению и по мощности начинают снижаться на намного более низких частотах. Главной причиной этого является наличие неустранимой ёмкости затвор-канал, что легко устанавливается методами компьютерного моделирования.

Частотные свойства БТ обычно описываются комплексным коэффициентом передачи тока в схеме с общимэмиттеромβ:

β = Iк / Iб = β0 / (1 + jω/ωβ) (50)

где β0 – коэффициент передачи тока в схеме с ОЭ при ω = 0, ωβпредельная частота коэффициента передачи токав схемесОЭ.

Из (50) можно получить выражения для модуля и фазы комплексного коэффициента β, т.е. для АЧХ и ФЧХ:

|β| = β0 / (1 + [ω/ωβ]2)1/2 (51), φ = - arctg(ω/ωβ) (52) АЧХ и ФЧХ БТ в схемах с ОЭ и ОБ изображены на рис. 46б.

Для схемы с ОЭ применяется также понятие граничная частота коэффициента передачи тока ωгр. На этой частоте |β| = 1, т.е. усилительные свойства по току полностью утрачиваются, хотя коэффициент передачи по мощности может быть больше 1 за счет усиления по напряжению.

Реже используется схема с общей базой, усиление которой значительно меньше. В то же время такое включение обеспечивает равномерное усиление и минимальный фазовый сдвиг в намного бóльшей полосе частот

39. Роль и методы изоляции элементов интегральных схем.

Роль:

Закрытый p-n переход идеальной изоляции не обеспечивает. В нём протекает небольшой обратный ток, у p-n перехода есть также некоторая барьерная ёмкость. То и другое должно учитываться при разработке ИС ,разработок топологии, способов изготовления фотошаблонов, совершенствования методов фотолитографии, способов и методов изоляции ИС.

Методы изоляции:

  1. Изоляция обратно смещенным p–n-переходом.

  2. Изоляция диэлектриком.

  3. Комбинированные методы изоляции.

Основным методом изоляции элементов от подложки является изоляциязакрытымиp-nпереходами.

Поскольку внешние, граничащие с подложкой слои всех элементов являются полупроводником n-типа, а подложка – полупроводник р-типа, между элементами и подложкой существуют p-n переходы (см. рис. 8 – 12). Достаточно закрыть эти переходы подачей обратного напряжения, чтобы перевести их в закрытое состояние, в котором тока в переходе почти нет.

На рис. 13 показано, как такая изоляция осуществляется в ИС с n-канальными МДП-транзисторами. Диоды здесь условно отображают существование p-n переходов между всеми частями транзистора и подложкой.




Рис. 13

Принципиально возможна и диэлектрическая изоляция элементов ИС. Примером такой изоляции являются ИС «кремнийнасапфире», рис. 14.



Рис. 14

Синтетический сапфир, в отличие от драгоценного природного сапфира, относительно недорог и довольно часто применяется в различных технических устройствах. Он является отличным кристаллическим диэлектриком, очень прочен, прозрачен, устойчив к самым разным воздействиям. Его отличительной особенностью является также идеальное совпадение параметров кристаллической решётки с параметрами решётки кремния.

54.Операционный усилитель с обратной связью. Формула Блэка.


Обобщённая схема усилителя с обратной связью представлена на рис. 46.


Операционный усилитель (ОУ) – одна из наиболее распространённых АИС, которая примененяется как самостоятельная ИС так и в составе ИС с большой степенью интеграции. Широкое применение ОУ обусловлено их исключительной универсальностью. На ОУ могут быть построены разнообразные усилители, фильтры, корректоры АЧХ и ФЧХ, преобразователи сигналов, генераторы сигналов различной формы.

Она содержит усилитель с коэффициентом усиления по напряжению Ku, часть выходного сигнала которого возвращается на вход через цепь обратной связи с коэффициентом передачи β. Если обратная связь положительная (ПОС), напряжение обратной связи Uoc во входном сумматоре складывается с входным напряжением Uвх. Если обратная связь отрицательная (ООС), эти напряжения вычитаются. Коэффициент усиления усилителя с обратной связью Kuoc определяется формулойБлэка:

Kuoc = Ku /(1 ± β Ku)

Здесь знак «+» соответствует ООС, знак «-» соответствует ПОС. На рис. 47 представлены инвертирующая (а) и неинвертирующая (б) схемы на ОУ с ООС. В обоих схемах R1 и R2 образуют делитель напряжения, через который сигнал с выхода передаётся на вход, т.е. осуществляется обратная связь. Очевидно, что в такой цепи β = R1/(R1 + R2).

Согласно (14), в неинвертирующем включении:

Kuoоc = Ku /(1 + β Ku)

Так как у ОУ Ku » 1 (до 106), легко выполняется условие β Ku » 1 и поэтому единицей в скобках можно пренебречь. Тогда

Kuoоc ≈ Ku /(β Ku) = 1 / β = 1 + R2/R1


1   ...   5   6   7   8   9   10   11   12   ...   16


написать администратору сайта