Главная страница

Первый билет


Скачать 2.86 Mb.
НазваниеПервый билет
Дата14.02.2023
Размер2.86 Mb.
Формат файлаdocx
Имя файлаElektronika_shpora.docx
ТипДокументы
#937160
страница8 из 16
1   ...   4   5   6   7   8   9   10   11   ...   16

Восьмой билет




8.Барьерная и диффузионная ёмкость.


Электроёмкостью, или просто ёмкостью, называется способность различных объектов накапливать и сохранять электрические заряды.

Барьерной ёмкостью называют ёмкость таких объектов, в которых подвижные заряды сохраняются из-за отсутствия пути для их движения, т.е. для тока разряда, т.к. существует препятствие для этого тока (например, диэлектрический слой конденсатора или диэлектрический слой между металлом и полупроводником МДП-структуры; подобное препятствие образует также обеднённый слой полупроводника; концентрация подвижных носителей заряда в обеднённом полупроводнике может быть настолько малой, что он, как и диэлектрик, почти не проводит ток).

Сб = εε0S/w (16)

Диффузионной ёмкостью обладают объекты, в которых подвижные носители заряда диффундируют в некоторую полупроводниковую область и создают здесь диффузионный заряд.

Cдф = τIдф/φт , (17)

где φт = kT/q - термический потенциал.

В среднем, спустя время 2…3τ* большая часть носителей заряда погибает в результате рекомбинации с зарядами области, в которую они проникли. Поэтому диффузионный заряд и диффузионная ёмкость существуют пока происходит приток новых носителей, т.е. при Iдф ≠ 0 или пока в областях есть диффузионный заряд.

23. Импульсные свойства МДП и биполярных транзисторов. Временные диаграммы.


Импульсные свойства характеризуют реакцию транзисторного ключа на подачу на вход управляющего напряжения в виде импульса, вызывающего отпирание или запирание транзистора.

схемы простейших ключей на МДП и биполярном транзисторах.



Временные диаграммы eвх изображены на рис. 44, а,б. Сток и коллектор транзисторов через сопротивление R подключены к источнику питания Eпит.

Хотя eвх изменяется скачкообразно, входное напряжение обоих ключей изменяется не мгновенно, так как требуется некоторое время на заряд входной ёмкости, рис. 44, в, г. Поэтому отпирание обоих транзисторов начинается с некоторой задержкой tз. В течение этого времени напряжения на затворе и базе достигают порогового напряжения U0 и примерного напряжения отпирания эмиттерного перехода U*. В течение времени нарастания tн завершается заряд Cвх, разряд Свых и другие переходные процессы.

Токи достигают предельных значений Iс.нас и Iк.нас, что характерно для режима насыщения, используемого в ключах, рис. 44 д,е.


Запирание транзисторов связано с разрядом Cвх и зарядом Свых. Кроме того, возвращение БТ в закрытое состояние сопровождается запаздыванием переходных процессов на время рассасывания tрасс. В течение этого времени БТ остаётся открытым из-за заряда неосновных носителей, накопившегося в базе в режиме насыщения. Этот заряд исчезает, «рассасывается» не мгновенно и в течение некоторого времени поддерживает ток экстракции.

Результатом переходных процессов является появление времён t10 и t01, которые требуются ключам на переход из состояния логической 1 в состояние логического 0 и наоборот, рис. 44 ж,з

38. Пассивные элементы интегральных схем.


Некоторые типы пассивных элементов могут быть изготовлены «заодно» с транзисторами, что не потребует усложнения технологии.




На этом рисунке изображен фрагмент ИС на МДП-транзисторах, где одновременно с МДП-транзистором (слева) можно изготовить МДП- конденсатор (справа). Как и в обычном конденсаторе, верхней «обкладкой» является слой металла, изготавливаемый одновременно с металлическими контактами и затвором транзистора. Как и в обычном

конденсаторе, под верхней обкладкой расположен диэлектрический слой, в данном случае SiO2. Затем следует нижняя «обкладка» в виде n+-слоя, изготавливаемого заодно с истоком и стоком транзистора.

Ёмкость такого конденсатора, как и у обычного конденсатора, это барьерная ёмкость С: C = εε0S / d

В ИС на биполярных транзисторах можно, не усложняя технологию, изготовить так называемый диффузионныйрезистор. Здесь слева БТ, справа – резистор. Его рабочей частью является р-слой, изготавливаемый одновременно с базами БТ. Базовый слой выбран, как наименее легированный и наиболее высокоомный слой БТ. Как и у обычного резистора, сопротивление определяется свойствами токопроводящей части и её размерами: R = ρL / S




Размеры такого элемента, как и всех других элементов ИС, очень ограничены. Поэтому сопротивление диффузионного резистора не превышает десятков килоом, что чаще всего недостаточно много.

Название такого резистора связано с изготовлением его рабочей части с помощью диффузии примеси.


53. Операционный усилитель. Коэффициент усиления, входное и выходное сопротивление, частотные характеристики.


Операционными усилителями (ОУ) называется широкий класс усилителей постоянного тока с большим коэффициентом усиления, предназначенных для работы с глубокой обратной связью.

ОУ содержит 2 3, реже 4 дифференциальных усилительных каскада, включённых один за другим. Этим достигается практически неограниченная величина коэффициента усиления Ku, достигающая 106 раз.

Наличие дифференциального входа позволяет применять дифференциальное, инвертирующее и неинвертирующее включения.

Схемы всех трех перечисленных вариантов включения.




Здесь используется одно из двух общепринятых условных обозначений ОУ. В них инвертирующий вход помечен знаком «-» или обозначен кружком

Идеальным ОУ называется усилитель, обладающий очень высокими или, как принято говорить, идеальными параметрами. Основные характеристики такого ОУ:

коэффициент усиления бесконечно велик (К ∞); полоса пропускания бесконечно велика (∆𝐹 → ∞); входное сопротивление бесконечно велико (Rвх → ∞); выходное сопротивление бесконечно мало (Rвых 0);

выходное напряжение равно нулю при нулевом напряжении на входе.

Коэффициент усиления ОУ определяется отношением изменения входного напряжения к вызвавшему его изменению напряжения между дифференциальными входами усилителя при разомкнутой цепи обратной связи. Коэффициент усиления ОУ без обратной связи зависит от сопротивления нагрузки, температуры окружающей среды, напряжения питания и др.

Входное сопротивление. В зависимости от способа подачи входного сигнала в ОУ с дифференциальными входами различают дифференциальное входное сопротивление и входное сопротивление для синфазных сигналов. Дифференциальное входное сопротивление, т. е. сопротивление ОУ для входного сигнала, разность потенциалов которого приложена между дифференциальными входами ОУ, определяется величиной сопротивления между этими входами. Входное сопротивление для синфазного сигнала, т. е. сопротивление ОУ для входного напряжения, приложенного одновременно к обоим дифференциальным входам ОУ относительно земли, определяется сопротивлением между замкнутыми накоротко входами ОУ и заземляющей шиной.

Выходное сопротивление – это сопротивление ОУ, измеренное со стороны подключения нагрузки. Величина выходного сопротивления определяет максимальную силу выходного тока независимо от вида нагрузки. Этот параметр особенно важен для ОУ с разомкнутым контуром обратной связи, например для компараторов.

Полоса пропускания определяется видом частотной характеристики ОУ, т. е. зависимостью его усиления от частоты входного сигнала. Полоса пропускания, ограниченная предельной частотой fпр, расширяется во столько же раз, во сколько уменьшается коэффициент усиления.

1   ...   4   5   6   7   8   9   10   11   ...   16


написать администратору сайта