Автомасла. Подавляющая масса смазочных материалов всех назначений готовится на базе продуктов переработки нефти
Скачать 207 Kb.
|
Стабильность масла Подавляющая масса смазочных материалов всех назначений готовится на базе продуктов переработки нефти. Основным компонентом всех масел, смазок и некоторых специальных жидкостей, применяемых при эксплуатации автомобилей, является жидкое минеральное масло, получаемое из мазута. По способу производства масла подразделяются на дистиллятные и остаточные, а также компаундированные (смесь дистиллятного и остаточного масла). Дистиллятные получают разгонкой мазута, выделяя из него обычно не менее трех дистиллятов, содержащих углеводороды с температурами кипения в пределах 350-500º С. Разгонку ведут под вакуумом и при продувке водяным паром (с целью предотвращения крекинга мазута). Остаток от мазута после отбора из него наиболее вязкого масляного дистиллята называется гудроном. Он используется как топливо для котлов, для получения битумов, высоковязких масел и других целей. В связи с тем что полученные дистилляты содержат в своем составе избыточное количество нафтеновых кислот, смол, сернистых соединений и других веществ их подвергают очистке. С целью очистки применяют тонко помолотые и специально обработанные отбеливающие глины, которые при смешивании с дистиллятами благодаря сильно развитой поверхности адсорбируют смолы, серную и органические кислоты и другие вещества. Остаточными маслами называются очищенные гудроны. Классификация смазочных масел и требования к ним. Смазочными маслами называют фракции нефти, основу которых составляют углеводороды с температурами кипения выше 350º С. Масла представляют собой прозрачные или непрозрачные по сравнению с бензинами и дизельными топливами значительно более вязкие жидкости, окрашенные не полностью удаленными из их состава смолами в цвета от желтого до черного. Как и топлива, они легче воды и практически в ней не растворяются. Все масла нефтяного происхождения делятся на четыре типа: моторные (для авиационных газотурбинных, карбюраторных и дизельных двигателей); трансмиссионные (в том числе для гидропередач, гидродинамических и гидрообъемных приводов); специальные (турбинные, компрессорные и др.); различного назначения. Требования к автомобильным смазочным маслам: бесперебойное поступление ко всем узлам трения в агрегате; удерживание масла в узлах трения на всех режимах работы агрегата, в том числе и в период остановки; образование и удержание надежных и прочных масляных пленок на трущихся поверхностях; охлаждение трущихся деталей и отвод тепла от мест трения; вынос продуктов изнашивания из зон трения и защита этих зон от проникновения в них вредных реагентов из внешней среды; уплотнение зазоров в сопряжениях работающего агрегата; · возможно большая стабильность при окислении, механическом воздействии и обводнении, позволяющая обеспечить большой срок службы масла до замены без ущерба для надежности агрегата; минимальная токсичность, низкая стоимость и широкая сырьевая база. Соответствие масел указанным требованиям возможно в том случае, если масла будут: обладать оптимальными вязкостными свойствами, обеспечивающими надежную и экономическую работу агрегатов на всех режимах; иметь хорошую смазывающую способность для предотвращения интенсивного износа деталей; обладать достаточной химической стабильностью, обеспечивающей минимальное изменение структуры и образование коррозионно-активных включений и отложений; обладать устойчивостью к процессам испарения, вспенивания и образования эмульсий, а также к выпадению присадок; защищать трущиеся поверхности от воздействия агрессивных сред. Моторные масла. Температура застывания масел. Потеря текучести масла мажет привести к прекращению поступления масла в холодное время к узлам трения и подшипникам. Потеря текучести масла происходит в результате выделения из него высокоплавких углеводородов и образование из них кристаллического каркаса, как это происходит в дизельных топливах, либо вследствие возрастания вязкости охлаждаемого масла до достаточно большой величины. Температуру масел соответствующую потере им подвижности называют температурой застывания. При производстве масел осуществляется ряд мер, направленных на снижение температуры застывания. К этим мерам относятся удаление наиболее высокоплавких углеводородов при помощи депарафинизации и введения в очищенные масла депрессорных присадок, вызывающих сильное снижение (депрессию) температуры застывания (многофункциональная присадка АзНИИ-ЦИАТИМ-1 и полиметакрилат Д). Частицы депрессора постоянно находятся во взвешенном тонкодисперсном состоянии и адсорбируют мелкие кристаллы парафинов. В результате изменяется характер кристаллизации – прекращается рост кристаллов, образуется непрочная кристаллическая решетка и масло сохраняет подвижность. Депрессорные присадки при введении в масло в количестве 0,5 % уменьшают температуру застывания на 17-24º С. Вязкость масел. Основным показателем качества масел является вязкость. Вязкость – внутреннее трение жидкого смазочного материала, возникающее между его молекулами и слоями при их относительном перемещении под действием внешней силы. Если ограничивать само понятие вязкости – то это чисто физическое свойство смазывающей жидкости, показывающее ее состояние в зависимости от температуры. Использование масла низкой вязкости приводит к повышению трения (масляная пленка выдавливается из зоны трения), нагреву и усиленному изнашиванию деталей (возникает непосредственный контакт между трущимися поверхностями). С другой стороны, с уменьшением вязкости масла облегчается пуск двигателя, ускоряется подача масла в зазоры, на стенки цилиндра в момент пуска. При этом также вымываются продукты износа. Использование масел чрезвычайно высокой вязкости ведет к потере мощности и, в конечном итоге, снижению КПД машины, также возрастает интенсивность износа вследствие затруднения подачи масла в зазоры. Для улучшения вязкостно-температурных свойств масел целесообразно применять загущенные всесезонные масла. Загущенные масла получают путем загущения маловязкой масляной основы, присадками, способными повышать исходную вязкость масла, а также уменьшать скорость изменения вязкости с температурой. В качестве таких присадок широкое применение получили кремнийорганические жидкие полимеры, а также фторуглеродные материалы. Кремнийорганические жидкие полимеры имеют вязкость, одинаковую с вязкостью нефтяного масла при комнатной температуре, а температура замерзания у них на 40-45º С ниже, чем у нефтяных масел. Они не боятся высоких температур и легко могут работать при температуре на 40-45º С выше, чем нефтяные масла. Индекс вязкости. Применяемая вязкость масла определяется температурой окружающей среды, типом двигателя, особенностями агрегата или узла трения. Вязкость увеличивается с понижением температуры и уменьшается при ее повышении. Зависимость вязкости от температуры можно характеризовать отношением кинематической вязкости при температуре 50º С к кинематической вязкости при температуре 100º С. Чем меньше это отношение, тем выше вязкостно-температурные свойства масла. Степень изменения вязкости масла от температуры выражается индексом вязкости (ИВ). Чем выше значение ИВ, тем лучше масло. Условия работы масла в двигателе. В зависимости от условий работы масла в двигателе можно выделить три зоны: · высокотемпературную, включающую камеру сгорания, обращенную к ней поверхность днища поршня и верхнюю часть цилиндра. Температура деталей входящих в эту зону может достигать 400º С (днище поршня) и даже 800º С (выпускной клапан), температура горящих газов может достигать 2500º С; · среднетемпературную, охватывающую весь поршень с поршневыми кольцами и пальцем, верхнюю часть шатуна и стенки цилиндра. Максимальная температура в этой зоне достигает 300-350º С (поршневые кольца); · низкотемпературную, к которой относятся область коленчатого вала, картера и т.п. в области коренных и шатунных подшипников температура достигает 180º С. Физическая стабильность масла при повышенных температурах. Основной характеристикой физической стабильности масла при повышенных температурах является его способность к испарению. Чем интенсивнее испаряется масло в средне- и низкотемпературной зонах прогретого двигателя тем ниже его физическая стабильность. Способность масла к испарению при повышенных температурах принято характеризовать температурой вспышки. Температура вспышки – минимальная температура нефтепродукта, при которой его пары от нагревания в стандартном приборе образуют с окружающим воздухом смесь, вспыхивающую от пламени определенных размеров. Чем выше температура вспышки, тем меньше испаряемость масла и, следовательно, лучше физическая стабильность. Нагарообразование в высокотемпературной зоне двигателя. Нагар – это твердая углеродистая масса с шероховатой поверхностью, чаще черного цвета. Нагар образуется в высокотемпературной зоне двигателя вследствие сгорания попадающего туда при работе масла. Нагар отлагается на стенках камеры сгорания , днище поршня и стенках верхнего пояска поршня (200-420º С), свечах зажигания и форсунках (350-850º С), клапанах (420-815º С). Состав нагара зависит от химического состава масла, используемого топлива и загрязненности воздуха. Основными элементами, образующими нагар при работе двигателя на неэтилированном бензине, являются углерод (до 75 %), кислород (до 20 %) и водород (до 5 %). Нагар ухудшает теплоотвод от деталей, способствует возникновению детонации и калильного зажигания, а также загрязняет работающее масло твердыми частицами. Одной из основных причин возникновения нагара является несоблюдение теплового режима двигателя. Лакообразование в среднетемпературной зоне двигателя. Лаки представляют собой прочные тонкие пленки толщиной в десятые и сотые доли миллиметра с гладкой поверхностью, образующиеся на горячих деталях двигателя нагретых до температуры порядка 200-300º С (наружные и внутренние стенки поршня, поршневые кольца, верхняя головка шатуна). Лаки являются продуктами окисления (асфальтены и кислые смолы) углеводородов входящих в состав масел. Лакообразование зависит от качества масла, теплового режима двигателя и технического состояния его поршневой группы. Наибольшую опасность лаковое отложение представляет для поршневых колец. Одновременно с образованием лакового отложения происходит внедрение в него попадающих из высокотемпературной зоны сажи, пыли и других твердых частиц. По истечении некоторого времени лаковое отложение с внедрившимися в него твердыми частицами вызывает пригорание поршневых колец, внешне проявляющееся в полной потере ими подвижности. Одной из мер борьбы с лакообразованием является повышение химической стабильности масел по средствам введения в их состав антиокислительных присадок (например, фторуглеродных, дитиофосфатов, металлов, динолов, аминов и т.п.). Фторуглеродные масла проявляют высокую устойчивость ко всем видам окисления. К антиокислительным присадкам относятся также вещества, уменьшающие активность каталитического действия металлов, их оксидов и солей на процесс окисления, – пассиваторы металлов. Пассиваторы образуют на поверхности металлов стойкие адсорбционные или химически связанные пленки. Они не допускают каталитического воздействия металлов на процесс окисления, обеспечивая также защиту металла от коррозионного действия продуктов окисления. Также с целью предотвращения отложения смолисто-асфальтеновых веществ помимо антиокислительных присадок в масла вводят моющие (уменьшают и предотвращают образование высокотемпературных отложений, обеспечивают чистоту деталей, нейтрализуют продукты окисления топлива и масла) и диспергирующие (поддерживают загрязняющие примеси в масле в мелкодисперсном состоянии и предотвращают образование низкотемпературного шлама) присадки (Рис.79.). Рис.79. Изменение масла в низкотемпературной зоне двигателя. Несмотря на довольно мягкий тепловой режим в низкотемпературной зоне двигателя, там также происходит окисление масла. Типичными продуктами окисления масла в низкотемпературной зоне являются органические кислоты. Органические кислоты частично растворяются в масле, повышая его кислотное число, и частично переходят в кислые смолы, которые являются одним из компонентов шламов. Шламы – это густые, мазеобразные, липкие, темного цвета продукты, образующиеся при невысоких температурах (как правило, не выше 120º С), выпадающие из масла в виде осадков и создающие отложения в картере, маслопроводах и каналах, фильтрах, маслоприемнике и др. Шламы или осадки в двигателе состоят наполовину из масса, а остальное составляют вода (5-35 %), топливо, продукты окисления (сажа, нагар), пыль, продукты износа деталей. Образовавшиеся в масле при его окислении кислоты очень агрессивны (в первую очередь по отношению к свинцу). Для предотвращения коррозии металлов используют антикоррозионные присадки, главным образом содержащие органические соединения. В их молекулы входят сера или фосфор или оба этих элемента. Они способны образовывать на поверхности металла защитные пленки, защищая различные детали от коррозии. Для предотвращения коррозионного действия продуктов окисления и нейтрализации коррозийно-агрессивных продуктов сгорания сернистых топлив в масло вводят щелочные присадки (например, сульфонаты). Таблица. 15. Основные типы присадок к моторным маслам.
Марки масел для двигателей и области их применения (Таблица.16).. Моторные масла производятся по ГОСТ 6380-83, 12337-84, 25770-83, 38101783-80, 23497-79 и др. Моторные масла для двигателей внутреннего сгорания автомобильной технике делятся на масла для карбюраторных двигателей и масла для дизелей. По эксплуатационным свойствам предусмотрено шесть групп моторных масел: А, Б, В, Г, Д и Е. Последние две группы используются в тяжелых условиях эксплуатации. Переход от масел низших групп (А, Б) к высшим (В, Г), как правило, достигается путем расширения ассортимента и количественного увеличения присадок в маслах. Так в маслах группы А содержится 3,5 % присадок, группы Б1 - 5,5 %, группы В1 – 8,0 %, группы Г1 – 10-15 %. Таблица.16. Рекомендуемые области применения масел и соответствие групп моторных масел по эксплуатационным свойствам.
В зависимости от назначения масла групп Б, В и Г делятся на подгруппы и обозначаются индексом 1 – для карбюраторных двигателей и 2 – для дизельных двигателей. Универсальные масла для карбюраторных и дизельных двигателей одного уровня форсирования индекса в обозначении не имеют, а масла, принадлежащие к разным группам, должны иметь двойное буквенное обозначение (первая буква при использовании в дизельных двигателях, вторая – в карбюраторных). Примеры обозначения моторных масел (по ГОСТ 17479.1-85): М8В1, где М – моторное, 8 – класс вязкости (вязкость 8 мм2/с при 100º С), В1 – масло для среднефорсированных карбюраторных двигателей. М4З/8–В2Г1 , где 4З/8 – класс вязкости, З – масло содержит загущающие присадки, В2Г1 - предназначенное для среднефорсированных дизелей (В2) и высокофорсированных карбюраторных двигателей (Г1). В США и странах Европы обозначение масел для двигателей включает в себя класс вязкости и область применения. Градация масел по вязкости производится по классификации SAE J 300е, разработанной обществом инженеров (Society of Automotive Engineers). По условиям и областям применения оценка качества идет по системе API, предложенной Американским нефтяным институтом (American Petroleum Institute). По классификации вязкости SAE J 300e масла подразделяются и маркируются следующим образом: - летние – цифрами 20, 30, 40, 50 (цифра обозначает вязкость в секундах Сейболта при 8,9º С); - зимние – 10W, 15W, 20W, 25W (W- первая буква от слова Winter (зима)); - всесезонные (загущенные) имеют двойную нумерацию, например, 10W-50, что означает, что масло при 17,8º С соответствует по вязкости SAE -10, а при 98,9º С – 50. По классификации API моторные масла делятся на две категории: |