МиИ РК1. Предметом микробиологии является изучение биологических свойств
Скачать 0.87 Mb.
|
Пенетрация – процесс проникновения микроорганизмов внутрь клеток макроорганизма. Это характерно для вирусов, некоторых патогенных бактерий (шигеллы, энтероинвазивные кишечные палочки). Микроорганизмы размножаются внутри клеток, которые гибнут, вызывая нарушение целостности эпителиального покрова (эрозии). Инвазия – способность микроорганизмов проникать через слизистые и соединительнотканные барьеры в подлежащие ткани. Этот процесс обеспечивают жгутики, ферменты. Например, гиалуронидаза (Clostridium perfringens, некоторые Streptococcus sp., некоторые Staphylococcus sp.) расщепляет гиалуроновую кислоту, входящую в состав межклеточного вещества, что повышает проницаемость слизистых оболочек и соединительной ткани. Нейраминидаза (Vibrio cholerae, Yersinia sрp., Pasterella sрp., Streptococcus sрp., некоторые Clostridium sрp.) разрушает гликозидные связи, отщепляя концевые сиаловые кислоты от углеводов. Сиаловые кислоты деполимеризуют поверхностные структуры эпителиальных и других клеток организма, разжижают носовой секрет, слой слизи (муцина) кишечника, способствует распространению не только через слизистую оболочку, но и внутрь клеток. Агрессия – способность патогенных микроорганизмов размножаться в организме хозяина и противостоять его защитным механизмам. Агрессия осуществляется за счет структур клеточной стенки: капсулы, клеточной стенки, липополисахаридов (ЛПС) Грам- бактерий , которые подавляю миграцию лейкоцитов, препятствуют фагоцитозу. Для подавления иммунитета патогенные микроорганизмы продуцируют различные экзоферменты: протеазы – разрушают иммуноглобулины (антитела), плазмокоагулазу – свертывает плазму крови, фибринолизин – растворяющий сгустки фибрина, способствуя гематогенному распространению микробов, лецитиназу – расщепляющую лецитин цитоплазматических мембран эукариотических клеток, уреаза H.pylori нейтрализует кислую среду в желудке. Токсины бактерий: характеристика, механизмы действия Важную роль в развитии инфекционного процесса играют токсины. По биологическим свойствам бактериальные токсины делятся на экзотоксины и эндотоксины. Экзотоксины – белковые токсины продуцируют как грамположительные, так и грамотрицательные бактерии. По своей химической структуре это белки. По механизму действия экзотоксина на клетку различают несколько типов: 1-й тип- мембранотоксины - гемолизины, лейкоцидины; 2-й тип- функциональные блокаторы, или нейротоксины (тетаноспазмин, ботулинический токсин). Они блокируют передачу нервных импульсов в синапсах (в клетках спинного и головного мозга); 3-й тип- термостабильные и термолабильные энтеротоксины - они активизируют клеточную аденилатциклазу, что приводит к нарушению энтеросорбции и развитию диарейного синдрома. Такие токсины продуцируют холерный вибрион (холероген), энтеротоксигенные кишечные палочки; 4-й тип- цитотоксины - это токсины, блокирующие синтез белка субклеточном уровне. К ним относятся: энтеротоксин золотистых стафилококков, дерматонекротоксины стафилококков, палочек сибирской язвы, сине-зеленого гноя и возбудителя коклюша, а также антиэлонгаторы. Последние препятствуют элонгации (наращиванию) или транслокации, т. е. передвижению и-РНК вдоль рибосомы, и тем самым блокируют синтез белка. К антиэлонгаторам относят дифтерийный гистотоксин, токсин синегнойной палочки; 5-й тип- эксфолиатины, образуемые некоторыми штаммами золотистого стафилококка, и эритрогенины, продуцируемые пиогенным стрептококком группы А. Они влияют на процесс взаимодействия клеток между собой и с межклеточными веществами, и полностью определяют клиническую картину инфекции. В первом случае возникает пузырчатка новорожденных, во втором - скарлатина. Механизм действия белковых токсинов сводится к повреждению жизненно важных процессов в клетке: повышение проницаемости мембран, блокады синтеза белка и других биохимических процессов в клетке или нарушении взаимодействия и взаимокоординации между клетками. Экзотоксины являются сильными антигенами, которые и индуцируют образование в организме антитоксинов. По степени связи с бактериальной клетки экзотоксины делятся условно на три класса. • Класс А - токсины, секретируемые во внешнюю среду; • Класс В - токсины частично секретируемые и частично связанные с микробной клеткой; • Класс С - токсины, связанные и с микробной клеткой и попадающие в окружающую среду при разрушении клетки. Экзотоксины обладают высокой токсичностью. Под воздействием формалина и температуры экзотоксины утрачивают свою токсичность, но сохраняют иммуногенное свойство. Такие токсины получили название анатоксиныи применяются для профилактики заболевания столбняка, гангрены, ботулизма, дифтерии, а также используются в виде антигенов для иммунизации животных с целью получения анатоксических сывороток. По отношению к tразличают: термолабильные и термостабильные белковые токсины. Все экзотоксины состоят из 2х составных частей: 1 ая- рецептор и служит для фиксации молекулы токсина на соответствующей « клетке- мишени» 2ая- собственно токсический фрагмент- проникает внутрь клетки, блокирую жизненно важные метаболические реакции. Эндотоксины по своей химической структуре являются липополисахаридами, которые содержатся в клеточной стенке грамотрицательных бактерий и выделяются в окружающую среду при лизисе бактерий. Эндотоксины не обладают специфичностью, термостабильны, менее токсичны, обладают слабой иммуногенностью. При поступлении в организм больших доз эндотоксины угнетают фагоцитоз, гранулоцитоз, моноцитоз, увеличивают проницаемость капилляров, оказывают разрушающее действие на клетки. Микробные липополисахариды разрушают лейкоциты крови, вызывают дегрануляцию тучных клеток с выделением вазодилататоров, активируют фактор Хагемана, что приводит к лейкопении, гипертермии, гипотонии, ацидозу, диссеминированной внутрисосудистой коагуляции (ДВК). Эндотоксины стимулируют синтез интерферонов, активируют систему комплемента по классическому пути, обладают аллергическими свойствами. При введении небольших доз эндотоксина повышается резистентность организма, усиливается фагоцитоз, стимулируются В-лимфоциты. Сыворотка животного иммунизированного эндотоксином обладает слабой антитоксической активностью и не нейтрализует эндотоксин. Патогенность бактерий контролируется тремя типами генов: гены - собственной хромосомами, гены, привнесенные плазмидами и умеренными фагами. Входные ворота и пути распространения возбудителей в организме. Экзогенная и эндогенная инфекция, бактериемия, септицемия: определение понятий. Входными ворогами инфекции называют лишённые физиологической защиты органы и ткани, через которые микроб проникает в организм. Такими воротами могут быть: • кожные покровы (например, для возбудителей малярии, сыпного тифа, кожного лейшманиоза); • слизистые оболочки дыхательных путей (для возбудителей гриппа, кори, скарлатины и др.); • слизистые оболочки ЖКТ (например, для возбудителей дизентерии, брюшного тифа); • слизистая оболочка мочеполовых органов (для возбудителей гонореи, сифилиса и др.); • стенки кровеносных и/или лимфатических сосудов, через которые возбудитель поступает в кровь или лимфу (например, при укусах членистоногих и животных, инъекциях и хирургических вмешательствах). Входные ворота могут определять нозологическую форму заболевания. Так, внедрение стрептококка в области миндалин вызывает ангину, через кожу — рожу или пиодермию, в области матки — эндометрит. Инфицирующая дозавыражается минимально необходимым количеством клеток возбудителя, для потенциально патогенных она, как правило, больше, чем для безусловно патогенных. Величина инфицирующей дозы в большой мере зависит от вирулентных свойств возбудителя. Между этими двумя характеристиками существует обратная зависимость: чем выше вирулентность, тем ниже инфицирующая доза, и наоборот. Известно, что для такого высоковирулентного возбудителя, как чумная палочка (Yersinia pestis), инфицирующая доза может колебаться от одной до нескольких микробных клеток; для Shigella dysenteriae (палочка Григоръева-Шига) — около 100 микробных клеток. В отличие от этого, инфицирующая доза низковирулентных штаммов может быть равна 105-106 микробных клеток. Они определяются входными воротами инфекции, путями её распространения в организме, механизмами противоинфекционной резистентности. Для характеристики явлений, связанных с нахождением микроорганизмов или токсинов в крови и лимфе, применяют термины: бактериемия (наличие в крови бактерий); фунгемия (наличие в крови грибов); вирусемия (наличие в крови вирусов); паразитемия (наличие в крови простейших). Названные состояния могут сопровождаться клиническими проявлениями либо протекать бессимптомно. Нередко микроорганизмы циркулируют в кровотоке временно, проникая в кровь при чрезмерных физических нагрузках и стрессовых ситуациях (длительной бессоннице, переохлаждении или перегреве организма). Как правило, их циркуляция протекает бессимптомно или субклинически, хотя в кровотоке практически здоровых пациентов могут циркулировать Staphylococcus epidermidis, Clostridium perfringens и др. Клинически выраженные состояния обычно развиваются при проникновении микроорганизмов в кровь в результате травм, после медицинских манипуляций либо из инфекционного очага. Пребывание микроорганизмов в крови характерно для многих вирусных (грипп, гепатит В) и бактериальных (брюшной тиф, риккетсиозы) инфекций. Циркуляция микроорганизмов в кровотоке — важная и обязательная стадия патогенеза инфекций, передающихся через укусы членистоногих — переносчиков заболеваний (чума, сыпной тиф), поддерживающих циркуляцию возбудителя в природе и тем самым сохраняющих его как вид. Важная особенность бактериемии — микроорганизмы циркулируют в кровотоке, но не размножаются в нём. Однако уменьшение микробицидных свойств крови даёт возможность микроорганизмам размножаться в кровотоке, что приводит к развитию тяжёлых генерализованных состояний, известных как сепсис. Обычно такая ситуация — следствие непрерывного или периодического поступления возбудителей в кровоток. Состояния, при которых микроорганизм только размножается в крови, определяют термином септицемия. Состояния, при которых микроорганизм не только размножается в кровотоке, но и формирует новые очаги гнойного воспаления в различных тканях и органах, известны как септикопиемии. Если в патогенезе инфекционного заболевания ведущим звеном служит интоксикация, вызванная циркуляцией экзо- или эндотоксинов возбудителя в крови, то такие состояния определяют термином токсинемия. Иммунная система человека: основные функции, принцип организации, центральные и периферические органы иммунной системы. Структура иммунной системы. Иммунная система представлена лимфоидной тканью. Это специализированная, анатомически обособленная ткань, разбросанная по всему организму в виде различных лимфоидных образований. К лимфоидной ткани относятся вилочковая, или зобная, железа, костный мозг, селезенка, лимфатические узлы (групповые лимфатические фолликулы, или пейеровы бляшки, миндалины, подмышечные, паховые и другие лимфатические образования, разбросанные по всему организму), а также циркулирующие в крови лимфоциты. Функции иммунной системы. Иммунная система выполняет функцию специфической зашиты от антигенов, представляющую собой лимфоидную ткань, способную комплексом клеточных и гуморальных реакций, осуществляемых с помощью набора иммунореагентов, нейтрализовать, обезвредить, удалить, разрушить генетически чужеродный антиген, попавший в организм извне или образовавшийся в самом организме. Специфическая функция иммунной системы в обезвреживании антигенов дополняется комплексом механизмов и реакций неспецифического характера, направленных на обеспечение резистентности организма к воздействию любых чужеродных веществ, в том числе и антигенов. Центральные: костный мозг и тимус. Периферические: селезенка, лимфатические узлы, лимфоидная ткань ассоциированная со слизистыми. Лимфоидная ткань состоит из ретикулярных клеток, составляющих остов ткани, и лимфоцитов, находящихся между этими клетками. Основными функциональными клетками иммунной системы являются лимфоциты, подразделяющиеся на Т- и В-лимфоциты и их субпопуляции. Общее число лимфоцитов в человеческом организме достигает 1012, а общая масса лимфоидной ткани составляет примерно 1—2 % от массы тела. В центральных органах иммунной системы постоянно идут процессы пролиферации клеток-предшественниц Т- и В-лимфоцитов, их созревания (дифференцировки), их отбора (селекции), сопровождающиеся их частичной гибелью или транспортировкой созревающих клеток через кровь в периферические органы. Периферические органы иммунной системы являются местом встречи Т-и В-лимфоцитов с поступающими туда антигенами, местом распознавания антигенов и развития последовательных стадий специфического иммунного ответа на данный антиген. Распознавание антигена лимфоцитом служит сигналом его усиленной пролиферации, ускоренной дифференцировки и активации. В-лимфоциты после активации в периферических органах иммунной системы дифференцируются в плазматические клетки, продуцирующие и секретирующие антитела — иммуноглобулины. Активированные Т- и В-лимфоциты в периферических органах иммунной системы продуцируют и секретируют межклеточные медиаторы — цитокины, влияющие на иммунный ответ. Там же, в периферических органах иммунной системы, накапливаются и сохраняются долгоживущие Т- и В-лимфоциты, ответственные за поддержание «иммунологической памяти» о встрече с данным антигеном. Виды иммунитета – врожденный, приобретенный: определение понятий, основные свойства. Иммунитет – это способ защиты организма от генетически чужеродных веществ – антигенов экзогенного и эндогенного происхождения, направленный на поддержание и сохранение гомеостаза, структурной и функциональной целостности организма, биологической (антигенной)индивидуальности каждого организма и вида в целом. Врожденный, или видовой, иммунитет, он же наследственный, генетический, конституциональный — это выработанная в процессе филогенеза генетически закрепленная, передающаяся по наследству невосприимчивость данного вида и его индивидов к какому-либо антигену (или микроорганизму), обусловленная биологическими особенностями самого организма, свойствами данного антигена, а также особенностями их взаимодействия. Примером может служить невосприимчивость человека к некоторым возбудителям, в том числе к особо опасным для сельскохозяйственных животных (чума крупного рогатого скота, болезнь Ньюкасла, поражающая птиц, оспа лошадей и др.), нечувствительность человека к бактериофагам, поражающим клетки бактерий. К генетическому иммунитету можно также отнести отсутствие взаимных иммунных реакций на тканевые антигены у однояйцовых близнецов; различают чувствительность к одним и тем же антигенам у различных линий животных, т. е. животных с различным генотипом. Видовой иммунитет может быть абсолютным и относительным. Например, нечувствительные к столбнячному токсину лягушки могут реагировать на его введение, если повысить температуру их тела. Белые мыши, не чувствительные к какому-либо антигену, приобретают способность реагировать на него, если воздействовать на них иммунодепрессантами или удалить у них центральный орган иммунитета — тимус. Приобретенный иммунитет — это невосприимчивость к антигену чувствительного к нему организма человека, животных и пр., приобретаемая в процессе онтогенеза в результате естественной встречи с этим антигеном организма, например, при вакцинации. Примером естественного приобретенного иммунитета у человека может служить невосприимчивость к инфекции, возникающая после перенесенного заболевания, так называемый постинфекционный иммунитет (например, после брюшного тифа, дифтерии и других инфекций), а также «проиммуниция», т. е. приобретение невосприимчивости к ряду микроорганизмов, обитающих в окружающей среде и в организме человека и постепенно воздействующих на иммунную систему своими антигенами. В отличие от приобретенного иммунитета в результате перенесенного инфекционного заболевания или «скрытной» иммунизации, на практике широко используют преднамеренную иммунизацию антигенами для создания к ним невосприимчивости организма. С этой целью применяют вакцинацию, а также введение специфических иммуноглобулинов, сывороточных препаратов или иммунокомпетентных клеток. Приобретаемый при этом иммунитет называют поствакцинальным, и служит он для защиты от возбудителей инфекционных болезней, а также других чужеродных антигенов. Приобретенный иммунитет может быть активным и пассивным. Активный иммунитет обусловлен активной реакцией, активным вовлечением в процесс иммунной системы при встрече с данным антигеном (например, поствакцинальный, постинфекционный иммунитет), а пассивный иммунитет формируется за счет введения в организм уже готовых иммунореагентов, способных обеспечить защиту от антигена. К таким иммунореагентам относятся антитела, т. е. специфические иммуноглобулины и иммунные сыворотки, а также иммунные лимфоциты. Иммуноглобулины широко используют для пассивной иммунизации, а также для специфического лечения при многих инфекциях (дифтерия, ботулизм, бешенство, корь и др.). Пассивный иммунитет у новорожденных детей создается иммуноглобулинами при плацентарной внутриутробной передаче антител от матери ребенку ииграет существенную роль в защите от многих детских инфекций в первые месяцы жизни ребенка. Антигены: определение понятия, свойства. Антигены микроорганизмов. Антиген – это биополимер органической природы, генетически чужеродный для макроорганизма, который при попадании в последний распознаётся его иммунной системой и вызывает иммунные реакции, направленные на его устранение. Антигены обладают рядом характерных свойств: антигенностью, специфичностью и иммуногенностью. |